JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Aerodynamic Heating Characteristics Over a Protuberance in Hypersonic Flows Using Fast Response Thermo Gauges
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Aerodynamic Heating Characteristics Over a Protuberance in Hypersonic Flows Using Fast Response Thermo Gauges
Lee, Hyoung-Jin; Lee, Bok-Jin; Jeung, In-Seuck; Kim, Seoung-Lyoung; Kim, In-Sun;
  PDF(new window)
 Abstract
Through experimental investigations utilizing hypersonic shock tunnel-coaxial thermocouples as well as blow down hypersonic wind tunnel-temperature sensitive paints, the heat flux and the temperature over a protuberance were measured and analyzed. The experimental data were subsequently compared to heat flux data that was obtained by using blow down hypersonic wind tunnel and heat flux gauges. According to the comparison, both sets of data illustrated correlation with one another. The measured heat flux was large when the height of the protuberance was large. Experimental results show that heat flux measurements taken at higher locations were greater than those taken at lower locations. For high protuberances, a severe jump in the heat flux was observed, ranging in values within 0.6-0.7 of the height of the protuberances. However, when the protuberance was sufficiently short, a rise in the heat flux was rarely observed as the protuberance was totally submerged under the separation region.
 Keywords
Protuberance;Hypersonic;Heat flux;Coaxial-thermocouple;Temperature--sensitive-paint;
 Language
English
 Cited by
1.
Hypersonic Interference Heating on Flat Plate with Short Three-Dimensional Protuberances, AIAA Journal, 2014, 52, 4, 747  crossref(new windwow)
 References
1.
Bell, J. H., Schairer, E. T., Hand, L. A., and Mehta, R. D. (2001). Surface pressure measurements using luminescent coatings. Annual Review Fluid Mechanics, 33, 155-206. crossref(new window)

2.
Buttsworth, D. R., Stevens, R., and Stone, C. R. (2005). Eroding ribbon thermocouple: impulse response and transient heat flux analysis. Measurement Science Technology, 16, 1487-1494. crossref(new window)

3.
Couch, L. M. (1969). Flow-Field Measurements Downstream of Two Protuberances on a Flat Plate Submerged in a Turbulent Boundary Layer at Mach 2.49 and 4.44. NASA TN D-5297. Washington, DC: National Aeronautics and Space Administration.

4.
Hiers R. S. and Loubsky W. J. (1967). Effect of Shock-Wave Impingement on the Heat Transfer on a Cylindrical Leading Edge. NASA TN D-3859. Washington, DC: National Aeronautics and Space Administration.

5.
Hung, F. T. and Clauss, J. M. (1980). Three dimensional protuberance interference heating in high speed flow. 18th AIAA Aerospace Sciences Meeting, Pasadena, CA. AIAA-80-289.

6.
Hung, F. T. and Patel, D. K. (1984). Protuberance interference heating in high speed flow. 19th AIAA, Thermophysics Conference, Snowmass, CO. AIAA-84-39368.

7.
Kaufman, L. G., Kerkegi, R. H., and Morton, L. C. (1973). Shock impingement caused by boundary layer separation ahead of blunt fins. AIAA Journal, 11, 1363-1364. crossref(new window)

8.
Lee, H. J., Lee, B. J. Jeung I. S., Kim, S. L., and Kim, I. (2009). Measurement of aerodynamic heating over the protuberance in hypersonic flow at Mach 7. Journal of the Korean Society for Aeronautical and Space Science, 37, 562-570. crossref(new window)

9.
Liu, T. and Sullivan, J. P. (2005) Pressure and Temperature Sensitive Paints. New York: Springer.

10.
Nakakita, K., Osafune, T., and Asai, K. (2003). Global heat transfer measurement in a hypersonic shock tunnel using temperature-sensitive-paint. 41th AIAA Aerospace Sciences Meeting, Reno, NV. AIAA-2003-0743.

11.
Ohmi, S., Nagai, H., and Asai, K. (2006). Effect of TSP layer thickness on global heat transfer measurement in hypersonic flow. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. AIAA-2006-1048.

12.
Sedney, R. (1973). A survey of the effect of small protuberances on boundary layer flows. AIAA Journal, 11, 782-792. crossref(new window)

13.
Sedney, R. (1975). The structure of three-dimensional separated flows in obstacle, boundary-layer interactions. AGARD Conference Proceedings, Vol. 168.

14.
Truitt, R. W. (1965). Hypersonic turbulent boundary layer interference heat transfer in vicinity of protuberance. AIAA Journal, 3, 1745.

15.
Waltrup, P. J., Hall, D. J., and Schetz, J. A. (1968). Flowfield in the vicinity of cylindrical protuberance on a flat plate in supersonic flow. Journal of Spacecraft, 5, 127-128. crossref(new window)

16.
Westkaemper, J. C. (1968). Turbulent boundary-layer separation ahead of cylinders. AIAA Journal, 6, 1352-1355. crossref(new window)

17.
Whitehead, A. H. (1969). Flow-Field and Drag Characteristics of Several Boundary-Layer Tripping Elements in Hypersonic Flow. NASA TN D-5454. Washington, DC: National Aeronautics and Space Administration.