JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimization of Composite Laminates Subjected to High Velocity Impact Using a Genetic Algorithm
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimization of Composite Laminates Subjected to High Velocity Impact Using a Genetic Algorithm
Nguyen, Khanh-Hung; Ahn, Jeoung-Hee; Kweon, Jin-Hwe; Choi, Jin-Ho;
  PDF(new window)
 Abstract
In this study, a genetic algorithm was utilized to optimize the stacking sequence of a composite plate subjected to a high velocity impact. The aim is to minimize the maximum backplane displacement of the plate. In the finite element model, we idealized the impactor using solid elements and modeled the composite plate by shell elements to reduce the analysis time. Various tests were carried out to investigate the effect of parameters in the genetic algorithm such as the type of variables, population size, number of discrete variables, and mutation probability.
 Keywords
High velocity impact;Composite;LS DYNA;LS-OPT;Genetic algorithm;
 Language
English
 Cited by
 References
1.
Arora, J. S. (2004). Introduction to Optimum Design. 2nd ed. New York: Elsevier/Academic Press.

2.
Arora, J. S., Huang, M. W., and Hsieh, C. C. (1994). Methods for optimization of nonlinear problems with discrete variables: A review. Structural Optimization, 8, 69-85. crossref(new window)

3.
Baker, A. A., Dutton, S., and Kelly, D. (2004). Composite Materials for Aircraft Structures. 2nd ed. Reston, VA: American Institute of Aeronautics and Astronautics.

4.
Chambers, A. R., Mowlem, M. C., and Dokos, L. (2007). Evaluating impact damage in CFRP using fibre optic sensors. Composites Science and Technology, 67, 1235-1242. crossref(new window)

5.
Chen, J. K., Allahdadi, F. A., and Carney, T. C. (1997). Highvelocity impact of graphite/epoxy composite laminates. Composites Science and Technology, 57, 1369-1379. crossref(new window)

6.
Chen, S. Y. (2001). An approach for impact structure optimization using the robust genetic algorithm. Finite Elements in Analysis and Design, 37, 431-446. crossref(new window)

7.
De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD Thesis, University of Michigan.

8.
Fujii, K., Aoki, M., Kiuchi, N., Yasuda, E., and Tanabe, Y. (2002). Impact perforation behavior of CFRPs using high-velocity steel sphere. International Journal of Impact Engineering, 27, 497-508. crossref(new window)

9.
Gower, H. L., Cronin, D. S., and Plumtree, A. (2008). Ballistic impact response of laminated composite panels. International Journal of Impact Engineering, 35, 1000-1008. crossref(new window)

10.
Kogiso, N., Watson, L. T., Gürdal, Z., and Haftka, R. T. (1994). Genetic algorithms with local improvement for composite laminate design. Structural Optimization, 7, 207-218. crossref(new window)

11.
Lin, C. C. and Lee, Y. J. (2004). Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement. Composite Structures, 63, 339-345. crossref(new window)

12.
Livermore Software Technology Corporation. (2008). LS-DYNA Keyword User’s Manual. Livermore, CA: Livermore Software Technology Corporation.

13.
Lopez-Puente, J., Zaera, R., and Navarro, C. (2008). Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Composites Part A: Applied Science and Manufacturing, 39, 374-387. crossref(new window)

14.
Naik, N. K. and Shrirao, P. (2004). Composite structures under ballistic impact. Composite Structures, 66, 579-590. crossref(new window)

15.
Park, I. J., Jung, S. N., Kim, D. H., and Yun, C. Y. (2009). General purpose cross-section analysis program for composite rotor blades. International Journal of Aeronautical and Space Sicences, 10, 77-85. crossref(new window)

16.
Soremekun, G., Gurdal, Z., Haftka, R. T., and Watson, L. T. (2001). Composite laminate design optimization by genetic algorithm with generalized elitist selection. Computers and Structures, 79, 131-143. crossref(new window)

17.
Stander, N., Roux, W., Goel, T., Eggleston, T., and Craig, K. (2008). LS-OPT User’s Manual. Livermore, CA: Livermore Software Technology Corporation.

18.
Talebi, H., Wong, S. V., and Hamouda, A. M. S. (2009). Finite element evaluation of projectile nose angle effects in ballistic perforation of high strength fabric. Composite Structures, 87, 314-320. crossref(new window)

19.
Van Hoof, J. (1999). Modelling of Impact Induced Delamination in Composite Materials. PhD Thesis, Carleton University.

20.
Walker, M. and Smith, R. E. (2003). A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis. Composite Structures, 62, 123-128. crossref(new window)

21.
Will, M. A., Franz, T., and Nurick, G. N. (2002). The effect of laminate stacking sequence of CFRP filament wound tubes subjected to projectile impact. Composite Structures, 58, 259-270. crossref(new window)

22.
Yong, M., Falzon, B. G., and Iannucci, L. (2008). On the application of genetic algorithms for optimising composites against impact loading. International Journal of Impact Engineering, 35, 1293-1302. crossref(new window)