JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Application of Piezoelectric Materials in Smart Structures in China
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Application of Piezoelectric Materials in Smart Structures in China
Qiu, Jinhao; Ji, Hongli;
  PDF(new window)
 Abstract
Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, the research activities and achievements on the applications of piezoelectric materials in smart structures in China, including vibration control, noise control, energy harvesting, structural health monitoring, and hysteresis control, are introduced. Special attention is given to the introduction of semi-active vibration suppression based on a synchronized switching technique and piezoelectric fibers with metal cores for health monitoring. Such mechanisms are relatively new and possess great potential for future applications in aerospace engineering.
 Keywords
Piezoelectric materials;Vibration control;Energy harvesting;Structural health monitoring;Piezoelectric hysteresis;
 Language
English
 Cited by
1.
A Fundamental Study for Design of Electric Energy Harvesting Device using PZT on the Road, Journal of the Korean Society of Road Engineers, 2011, 13, 4, 159  crossref(new windwow)
 References
1.
Badel, A., Jinhao, Q., and Nakano, T. (2008). A new simple asymmetric hysteresis operator and its application to inverse control of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 1086-1094. crossref(new window)

2.
Badel, A., Sebald, G., Guyomar, D., Lallart, M., Lefeuvre, E., Richard, C., and Qiu, J. (2006). Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping. Journal of the Acoustical Society of America, 119, 2815-2825. crossref(new window)

3.
Behrens, S., Fleming, A. J., and Moheimani, S. O. R. (2003). A broadband controller for shunt piezoelectric damping of structural vibration. Smart Materials and Structures, 12, 18-28.

4.
Cao, R., Li, Q., Liu, Y., and Qin, L. (2005). Realization of Preisach model and positioning control on PZT using VB database technique. Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 27, 449-451.

5.
Chen, G., Huang, X., and Wang, M. (2006). Modeling and control of a piezoelectric microgripper for micro assembly. Gaojishu Tongxin/Chinese High Technology Letters, 16, 1134-1138.

6.
Chen, G., Wang, H., Chen, K., and Muto, K. (2008). The influences of path characteristics on multichannel feedforword active noise control system. Journal of Sound and Vibration, 311, 729-736. crossref(new window)

7.
Chen, K. A., Ma, Y. L., and Sun, J. C. (1995). Active control of structure-induced sound. Journal of Vibration and Shock, 14, 57-60 (in Chinese).

8.
Chen, L. X., Cai, G. P., and Pan, J. (2009). Experimental study of delayed feedback control for a flexible plate. Journal of Sound and Vibration, 322, 629-651. crossref(new window)

9.
Chen, Y. S., Qiu, J. H., Ji, H. L., and Zhu, K. J. (2010). Tracking control of piezoelectric actuator system using inverse hysteresis model. International Journal of Applied Electromagnetics and Mechanics, 33, 1555-1564.

10.
Corr, L. R. and Clark, W. W. (2003). A novel semi-active multi-modal vibration control law for a piezoceramic actuator. Journal of Vibration and Acoustics, Transactions of the ASME, 125, 214-222. crossref(new window)

11.
Cui, Y. G., Sun, B. Y., Dong, W. J., and Yang, Z. X. (2004). Study of coordinate transform model for hysteresis nonlinearity in piezoceramic actuator. Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, 44, 249-254.

12.
Dang, X. and Tan, Y. (2005a). Neural networks dynamic hysteresis model for piezoceramic actuator based on hysteresis operator of first-order differential equation. Physica B: Condensed Matter, 365, 173-184. crossref(new window)

13.
Dang, X. and Tan, Y. (2005b). Study on neural network modeling for hysteresis behavior of piezoceramic actuator based on gray theory. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 26, 913-916.

14.
Dang, X. J. and Tan, Y. H. (2007). Research on dynamic modeling for piezoceramic actuator based on Gamma filters. Xitong Fangzhen Xuebao / Journal of System Simulation, 19, 2012-2014.

15.
Dong, X. and Meng, G. (2005). Dynamics modeling and active vibration control of cantilever beam with piezoelectrics. Zhendong yu Chongji/Journal of Vibration and Shock, 24, 54-57.

16.
Elliott, S. J. (1994). Active control of structure-borne noise. Journal of Sound and Vibration, 177, 651-673. crossref(new window)

17.
Faiz, A., Guyomar, D., Petit, L., and Buttay, C. (2006). Wave transmission reduction by a piezoelectric semi-passive technique. Sensors and Actuators, A: Physical, 128, 230-237. crossref(new window)

18.
Fazelzadeh, S. A. and Jafari, S. M. (2008). Active control law design for flutter suppression and gust alleviation of a panel with piezoelectric actuators. Smart Materials and Structures, 17, 853-862.

19.
Fleming, A. J. and Moheimani, S. O. R. (2004). Improved current and charge amplifiers for driving piezoelectric loads, and issues in signal processing design for synthesis of shunt damping circuits. Journal of Intelligent Material Systems and Structures, 15, 77-92. crossref(new window)

20.
Fu, Y. and Zhang, J. (2009). Active control of the nonlinear static and dynamic responses for piezoelectric viscoelastic microplates. Smart Materials and Structures, 18, 1-9.

21.
Fuller, C. R., Elliott, S. J., and Nelson, P. A. (1996). Active Control of Vibration. London: Academic Press.

22.
Gong, D. C., Lu, F. Z., Pan, X. H., and Tang, Z. F. (2007). Precision tracking and experimental optimization of GMA by Preisach inverse compensation. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 15, 1241-1246.

23.
Guo, G. F. and Dang, X. J. (2008). Modeling for piezoceramic actuators based on PI model. Control & Automation, 24, 282-284 (in Chinese).

24.
Guyomar, D. and Badel, A. (2006). Nonlinear semi-passive multimodal vibration damping: An efficient probabilistic approach. Journal of Sound and Vibration, 294, 249-268. crossref(new window)

25.
Guyomar, D., Badel, A., Lefeuvre, E., and Richard, C. (2005). Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 584-594. crossref(new window)

26.
Guyomar, D., Richard, C., and Mohammadi, S. (2007). Semi-passive random vibration control based on statistics. Journal of Sound and Vibration, 307, 818-833. crossref(new window)

27.
Hagan, M. T., Demuth, H. B., and Beale, M. H. (1996). Neural Network Design. Boston: PWS Publishing Co.

28.
Hagood, N. W. and von Flotow, A. (1991). Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration, 146, 243-268. crossref(new window)

29.
Hansen, C. H., Qiu, X. J., Petersen, C. D., and Howard, C. Q. (2007). Active noise and vibration control system design considerations. Proceedings of the 8th Conference on Active Noise and Vibration Control Methods, Krakow, Poland. pp. 14-31.

30.
He, X. F., Wen, Z. Y., and Wen, Z. Q. (2009). Modeling and application of piezoelectric vibration-based power generator. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 17, 1436-1441.

31.
Hu, B. and Chen, G. (2006). Study on adaptive inverse control of hysteresis in piezoelectric microgripper. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 17, 798-801.

32.
Hu, H., Georgiou, H. M. S., and Ben-Mrad, R. (2005). Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions. IEEE/ASME Transactions on Mechatronics, 10, 230-239. crossref(new window)

33.
Hu, H., Xue, H., and Hu, Y. (2007a). A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54, 1177-1187. crossref(new window)

34.
Hu, H., Zhao, C., Feng, S., Hu, Y., and Chen, C. (2008a). Adjusting the resonant frequency of a PVDF bimorph power harvester through a corrugation-shaped harvesting structure. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 668-674. crossref(new window)

35.
Hu, Q. and Ma, G. (2006). Spacecraft vibration suppression using variable structure output feedback control and smart materials. Journal of Vibration and Acoustics, Transactions of the ASME, 128, 221-230. crossref(new window)

36.
Hu, Y., Xue, H., and Hu, H. (2007b). A piezoelectric power harvester with adjustable frequency through axial preloads. Smart Materials and Structures, 16, 1961-1966. crossref(new window)

37.
Hu, Y., Xue, H., Hu, T., and Hu, H. (2008b). Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 148-159. crossref(new window)

38.
Huang, P., Chen, J. J., Wang, X. B., Xu, Y. L., and Gao, W. (2005). Study on model predictive vibration control of intelligent plate. Mechanical Science and Technology, 24, 393-396 (in Chinese).

39.
Ji, H., Qio, J., Badel, A., and Zhu, K. (2009a). Semi-active vibration control of a composite beam using an adaptive SSDV approach. Journal of Intelligent Material Systems and Structures, 20, 401-412. crossref(new window)

40.
Ji, H., Qiu, J., Badel, A., Chen, Y., and Zhu, K. (2009b). Semi-active vibration control of a composite beam by adaptive synchronized switching on voltage sources based on LMS algorithm. Journal of Intelligent Material Systems and Structures, 20, 939-947. crossref(new window)

41.
Ji, H., Qiu, J., Cheng, J., and Inman, D. (2010a). Application of a negative capacitance circuit in synchronized switch damping techniques for vibration suppression, San Diego, CA (DOI: 10.1117/12.847078).

42.
Ji, H., Qiu, J., Zhu, K., and Badel, A. (2010b). Two-mode vibration control of a beam using nonlinear synchronized switching damping based on the maximization of converted energy. Journal of Sound and Vibration, 329, 2751-2767. crossref(new window)

43.
Ji, H., Qiu, J., Zhu, K., Chen, Y., and Badel, A. (2009c). Multimodal vibration control using a synchronized switch based on a displacement switching threshold. Smart Materials and Structures, 18, 1-8.

44.
Ji, H. L., Ma, Y., Qiu, J. H., Jiang, H., Shen, H., and Zhu, K. J. (2008). Optimal design of high efficiency piezoelectric energy harvester. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 16, 2346-2351.

45.
Jia, H., Wu, Y., Xuan, M., and Wang, L. (2002). New nonlinear mathematical model for a PZT actuator. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 13, 929-932.

46.
Jiang, H., Ji, H., Qiu, J., and Chen, Y. (2010). A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57, 1200-1210. crossref(new window)

47.
Jin, G., Liu, Z., Du, J., and Yang, T. (2009). Experimental study on active structural acoustic control based on distributed structural volume velocity sensors. Shengxue Xuebao/Acta Acustica, 34, 342-349.

48.
Kan, J. W., Tang, K. H., Wang, S. Y., Yang, Z. G., Jia, J., and Zeng, P. (2008). Modeling and simulation of piezoelectric cantilever generators. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 16, 71-75.

49.
Knyazev, A. S. and Tartakovskii, B. D. (1967). A basement of radiation from flexurally vibrating plates by means of active local vibration dampers. Soviet Physics Acoustics, 13, 115-116.

50.
Lallart, M., Garbuio, L., Petit, L., Richard, C., and Guyomar, D. (2008). Double synchronized switch harvesting (DSSH): A new energy harvesting scheme for efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 2119-2130. crossref(new window)

51.
Lallart, M., Harari, S., Petit, L., Guyomar, D., Richard, T., Richard, C., and Gaudiller, L. (2009). Blind switch damping (BSD): A self-adaptive semi-active damping technique. Journal of Sound and Vibration, 328, 29-41. crossref(new window)

52.
Lefeuvre, E., Badel, A., Petit, L., Richard, C., and Guyomar, D. (2006a). Semi-passive piezoelectric structural damping by synchronized switching on voltage sources. Journal of Intelligent Material Systems and Structures, 17, 653-660. crossref(new window)

53.
Lefeuvre, E., Badel, A., Richard, C., Petit, L., and Guyomar, D. (2006b). A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators, A: Physical, 126, 405-416. crossref(new window)

54.
Lemistre, M. and Balageas, D. (2001). Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Materials and Structures, 10, 504-511. crossref(new window)

55.
Li, D. S. and Cheng, L. (2010). The design of synthesized structural acoustic sensors for active control of interior noise with experimental validation. Journal of Sound and Vibration, 329, 123-139. crossref(new window)

56.
Li, F. and Zhao, J. H. (2007). Discrete methods based on first order reversal curves to identify preisach model of smart materials. Chinese Journal of Aeronautics, 20, 157-161. crossref(new window)

57.
Li, L., Liu, X. D., Hou, C. Z., and Wang, W. (2008). Mixed Preisach hysteresis model and its properties. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 16, 279-284.

58.
Li, L., Liu, X. D., Wang, W., and Hou, C. Z. (2007). Generalized nonlinear Preisach model for hysteresis nonlinearity of piezoceramic actuator and its numerical implementation. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 15, 706-712.

59.
Li, Y. N., Li, W., Ren, P., Guo, T., Yan, Z. D., Fu, X., and Hu, X. T. (2009). Resonance frequency and power output of piezoelectric microcantilever energy harvesting system. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 42, 373-376.

60.
Lin, F. J., Shieh, H. J., Huang, P. K., and Teng, L. T. (2006). Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53, 1649-1660. crossref(new window)

61.
Lin, Q. and Ermanni, P. (2004). Semi-active damping of a clamped plate using PZT. International Journal of Solids and Structures, 41, 1741-1752. crossref(new window)

62.
Liu, J., Qiu, J. H., Chang, W. J., Ji, H. L., and Zhu, K. J. (2010). Metal core piezoelectric ceramic fiber rosettes for acousto-ultrasonic source localization in plate structures. International Journal of Applied Electromagnetics and Mechanics, 33, 865-873.

63.
Liu, V. T., Lin, C. L., Huang, H. C., and Jian, Z. J. (2006a). A novel micro-positioning controller for piezoelectric actuators. Intelligent Control and Automation, 344, 450-455. crossref(new window)

64.
Liu, X. D., Xiu, C. B., Liu, C., and Li, L. (2006b). Hysteresis model of piezoceramics based on chaotic neural networks. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 26, 135-138.

65.
Lueg, P. (1936). Process of silencing sound oscillations. U.S. Patent No. 2043416.

66.
Makihara, K., Onoda, J., and Minesugi, K. (2006). Behavior of piezoelectric transducer on energy-recycling semiactive vibration suppression. AIAA Journal, 44, 411-413. crossref(new window)

67.
Makihara, K., Onoda, J., and Minesugi, K. (2007). A selfsensing method for switching vibration suppression with a piezoelectric actuator. Smart Materials and Structures, 16, 455-461. crossref(new window)

68.
Mao, Y. Q., Fu, Y. M., (2010). Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate. Journal of Sound and Vibration, 329, 2015-2028. crossref(new window)

69.
Onoda, J., Makihara, K., and Minesugi, K. (2003). Energyrecycling semi-active method for vibration suppression with piezoelectric transducers. AIAA Journal, 41, 711-719. crossref(new window)

70.
Park, C. H. and Baz, A. (2005). Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics. JVC/Journal of Vibration and Control, 11, 331-346. crossref(new window)

71.
Park, C. H. and Park, H. C. (2003). Multiple-mode structural vibration control using negative capacitive shunt damping. KSME International Journal, 17, 1650-1658.

72.
Qin, Y. X. and Hu, D. J. (2004). Nonlinear modeling for piezoelectric actuators. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 38, 1334-1336.

73.
Qiu, J., Hongli, J., Matsuta, K., and Shen, X. (2008). Active noise isolation of a plate structure without using acoustic sensors. Journal of Intelligent Material Systems and Structures, 19, 325-332. crossref(new window)

74.
Qiu, J., Ji, H., and Zhu, K. (2009a). Semi-active vibration control using piezoelectric actuators in smart structures. Frontiers of Mechanical Engineering in China, 4, 242-251.

75.
Qiu, J., Jiang, H., Ji, H., and Zhu, K. (2009b). Comparison between four piezoelectric energy harvesting circuits. Frontiers of Mechanical Engineering in China, 4, 153-159. crossref(new window)

76.
Qiu, J., Tani, J., Yamada, N., and Takahashi, H. (2003). Fabrication of piezoelectric fibers with metal core. Proceedings of SPIE Conference on Smart Structures and Materials, San Diego, CA. pp. 475-483.

77.
Qiu, X. J. and Hansen, H. C. (2003). Applying effort constraints on adaptive feedforward control using the active set method. Journal of Sound and Vibration, 260, 757-762. crossref(new window)

78.
Qiu, X. J., Li, N. G., and Hansen, C. H. (2006). The implementation of delayless subband active noise control algorithm. The 6th International Symposium on Active Noise and Vibration Control (ACTIVE 2006), Adelaide, Australia. pp. 1-10.

79.
Qiu, X. J. and Sha, J. Z. (1996). The development of active structural acoustic incidence control. Progress in Physics, 16, 533-543 (in Chinese).

80.
Qiu, Z. c., Han, J. D., Zhang, X. M., Wang, Y. C., and Wu, Z. W. (2009c). Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator. Journal of Sound and Vibration, 326, 438-455. crossref(new window)

81.
Qiu, Z. C., Zhang, X. M., Wu, H. X., and Zhang, H. H. (2007). Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. Journal of Sound and Vibration, 301, 521-543. crossref(new window)

82.
Qu, W. Z., Yao, Z. H., and Zhang, Z. J. (2005). Adaptive fuzzy inverse control of piezoelectric actuator with hysteresis and creep. Mechanical Science and Technology, 24, 1230-1232 (in Chinese).

83.
Richard, C., Guyomar, D., Audigier, D., and Bassaler, H. (2000). Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor. Proceedings of SPIE International Symposium on Smart Structures and Materials: Damping and Isolation, Newport Beach, CA. pp. 288-299.

84.
Sato, H., Sekiya, T., and Nagamine, M. (2004). Design of the metal-core piezoelectric fiber. Proceedings of SPIE Conference on Smart Structures and Materials, San Diego, CA. pp. 97-103.

85.
Sha, J. Z., Sun, G. R., Cao, S. X., and Wu, Q. X. (1981). Active sound absorber in ducts. Acta Acoustic, 3, 137-141 (in Chinese).

86.
Shen, H., Qiu, J., Ji, H., Zhu, K., and Balsi, M. (2010a). Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction. Smart Materials and Structures, 19, 115017. crossref(new window)

87.
Shen, H., Qiu, J., Ji, H., Zhu, K., Balsi, M., Giorgio, I., and Dell’Isola, F. (2010b). A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources. Sensors and Actuators, A: Physical, 161, 245-255. crossref(new window)

88.
Shen, H. S. and Liew, K. M. (2004). Postbuckling of axially loaded functionally graded cylindrical panels with piezoelectric actuators in thermal environments. Journal of Engineering Mechanics, 130, 982-995. crossref(new window)

89.
Shen, X. C., Fang, H. B., Wang, Y. J., and Liu, J. Q. (2008). Research and test of the circuit for MEMS-based piezoelectric micro energy harvesting device. Chinese Journal of Sensors and Actuators, 21, 692-694.

90.
Sheng, G. G. and Wang, X. (2009). Active control of functionally graded laminated cylindrical shells. Composite Structures, 90, 448-457. crossref(new window)

91.
Su, M. Y., Tan, Y. H., and Yang, X. M. (2004). The modeling and the inverse control of systems with hysteresis. Journal of Gulin University of Electronic Technology, 24, 1-4 (in Chinese).

92.
Tani, J., Takagi, T., and Qiu, J. (1998). Intelligent material systems: application of functional materials. Applied Mechanics Reviews, 51, 505-521. crossref(new window)

93.
Taylor, G. W., Burns, J. R., Kammann, S. M., Powers, W. B., and Welsh, T. R. (2001). The energy harvesting Eel: A small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 26, 539-547. crossref(new window)

94.
Timoshenko, S. and Goodier, J. N. (1969). Theory of Elasticity. 3rd ed. New York: McGraw-Hill.

95.
Tu, Y. and Fuller, C. R. (2000). Multiple reference feedforward active noise control Part II: reference preprocessing and experimental results. Journal of Sound and Vibration, 233, 761-774. crossref(new window)

96.
Wang, D., Zhu, H., Shen, D., and Ge, D. (2009). Health monitoring of reinforced concrete structures based on PZT admittance signal. 2nd International Conference on Smart Materials and Nanotechnology in Engineering, Weihai, China. pp. 74931H-1-7.

97.
Wang, Q, and Yuan, S. (2009). Baseline-free imaging method based on new pzt sensor arrangements. Journal of Intelligent Material Systems and Structures, 20, 1663-1673. crossref(new window)

98.
Wang, X. and Mao, Y. (2008). Adaptive sliding model control for hysteresis system based on Prandtl-Ishlinskii model. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 44, 171-178.

99.
Wang, Y., Zhang, X. H., Wu, G., and Hu, S. S. (2003). Mathematical model of self-repairing flight control. Transactions of Nanjing University of Aeronautics & Astronautics, 20, 178-183.