Advanced SearchSearch Tips
Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review
Khan, Shafi Ullah; Kim, Jang-Kyo;
  PDF(new window)
Fiber reinforced polymer composites (FRPs) are being increasingly used for a wide range of engineering applications owing to their high specific strength and stiffness. However, their through-the-thickness performance lacks some of the most demanding physical and mechanical property requirements for structural applications, such as aerospace vehicles and military components. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs), due to their excellent mechanical, thermal and electrical properties, offer great promise to improve the weak properties in the thickness direction and impart multi-functionality without substantial weight addition to FRPs. This paper reviews the progress made to date on i) the techniques developed for integration of CNTs/ CNFs into FRPs, and ii) the effects of the addition of these nanofillers on the interlaminar properties, such as such interlaminar shear strength, interlaminar fracture toughness and impact damage resistance and tolerance, of FRPs. The key challenges and future prospects in the development of multiscale CNT-FRP composites for advanced applications are also highlighted.
Carbon nanotubes;Carbon nanofibers;Fiber reinforced composites;Interlaminar properties;
 Cited by
Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites, Progress in Polymer Science, 2013, 38, 8, 1163  crossref(new windwow)
Improving compression-after-impact performance of carbon–fiber composites by CNTs/thermoplastic hybrid film interlayer, Composites Science and Technology, 2014, 95, 75  crossref(new windwow)
Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process, The Scientific World Journal, 2014, 2014, 1  crossref(new windwow)
Low-Velocity Impact and Residual Burst-Pressure Analysis of Cylindrical Composite Pressure Vessels, AIAA Journal, 2012, 50, 10, 2180  crossref(new windwow)
Synthesis of Carbon Nanofibers on Large Woven Cloth, C—Journal of Carbon Research, 2015, 1, 1, 2  crossref(new windwow)
Hybrid carbon nanotube–carbon fiber composites with improved in-plane mechanical properties, Composites Part B: Engineering, 2014, 66, 475  crossref(new windwow)
Abe, T., Hayashi, K., Sato, T., Yamane, S., and Hirokawa, T. (2003). A-VARTM process and z-anchor technology for primary aircraft structures. Proceedings of the 24th SAMPE Europe International Conference, Paris, France.

Abot, J. L., Song, Y., Schulz, M. J., and Shanov, V. N.(2008). Novel carbon nanotube array-reinforced laminated composite materials with higher interlaminar elastic properties. Composites Science and Technology, 68, 2755- 2760. crossref(new window)

Abrate, S. (1991). Impact on laminated composite materials. Applied Mechanics Reviews, 44, 155-190. crossref(new window)

Ajayan, P. M., Stephan, O., Colliex, C., and Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 265, 1212- 1214. crossref(new window)

Arai, M., Noro, Y., Sugimoto, K. i., and Endo, M. (2008). Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Composites Science and Technology, 68, 516-525. crossref(new window)

Avila, A. F., Soares, M. I., and Silva Neto, A. (2007). A study on nanostructured laminated plates behavior under lowvelocity impact loadings. International Journal of Impact Engineering, 34, 28-41. crossref(new window)

Barbezat, M., Brunner, A. J., Necola, A., Rees, M., Gasser, P., and Terrasi, G. (2009). Fracture behavior of GFRP laminates with nanocomposite epoxy resin matrix. Journal of Composite Materials, 43, 959-976. crossref(new window)

Bekyarova, E., Thostenson, E. T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H. T., Chou, T. W., Itkis, M. E., and Haddon, R. C. (2007). Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir, 23, 3970-3974. crossref(new window)

Bethune, D. S., Kiang, C. H., De Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605-607. crossref(new window)

Bhuiyan, M. A., Hosur, M. V., and Jeelani, S. (2009). Lowvelocity impact response of sandwich composites with nanophased foam core and biaxial (${\times}45^{\circ}C$) braided face sheets. Composites Part B: Engineering, 40, 561-571. crossref(new window)

Bibo, G. A. and Hogg, P. J. (1996). The role of reinforcement architecture on impact damage mechanisms and postimpact compression behaviour. Journal of Materials Science, 31, 1115-1137. crossref(new window)

Blanco, J., Garcia, E. J., Guzman De Villoria, R., and Wardle, B. L. (2009). Limiting mechanisms of mode i interlaminar toughening of composites reinforced with aligned carbon nanotubes. Journal of Composite Materials, 43, 825-841. crossref(new window)

Brown, R. T. and Crow, E. C., Jr. (1992). Automatic throughthe- thickness braiding. The 37th International SAMPE Symposium and Exhibition, Anaheim, CA. pp. 832-842.

Cantwell, W. J. and Morton, J. (1991). The impact resistance of composite materials-a review. Composites, 22, 347-362. crossref(new window)

Cesano, F., Bertarione, S., Scarano, D., and Zecchina, A. (2005). Connecting carbon fibers by means of catalytically grown nanofilaments: formation of carbon-carbon composites. Chemistry of Materials, 17, 5119-5123. crossref(new window)

Chandrasekaran, V. C. S., Advani, S. G., and Santare, M. H. (2010). Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites. Carbon, 48, 3692-3699. crossref(new window)

Chang, P., Mouritz, A. P., and Cox, B. N. (2007). Flexural properties of z-pinned laminates. Composites Part A: Applied Science and Manufacturing, 38, 244-251. crossref(new window)

Choi, J. S., Lim, S. T., Choi, H. J., Hong, S. M., Mohanty, A. K., Drzal, L. T., Misra, M., and Wibowo, A. C. (2005). Rheological, thermal, and morphological characteristics of plasticized cellulose acetate composite with natural fibers. Macromolecular Symposia, 224, 297-307. crossref(new window)

Davis, D. C. and Whelan, B. D. (2011). An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite. Composites Part B: Engineering, 42, 105-116. crossref(new window)

Dickinson, L. C., Farley, G. L., and Hinders, M. K. (1999). Prediction of effective three-dimensional elastic constants of translaminar reinforced composites. Journal of Composite Materials, 33, 1002-1029. crossref(new window)

Donnet, J. B., Wang, T. K., Peng, J. C. M., and Rebouillat, S. (1998). Carbon Fibers. 3rd ed. New York: Marcel Dekker.

Downs, W. B. and Baker, R. T. K. (1995). Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers. Journal of Materials Research, 10, 625-633. crossref(new window)

Dransfield, K., Baillie, C., and Mai, Y. W. (1994). Improving the delamination resistance of CFRP by stitching-a review. Composites Science and Technology, 50, 305-317. crossref(new window)

Dransfield, K. A., Jain, L. K., and Mai, Y. W. (1998). On the effects of stitching in CFRPs-I. Mode I delamination toughness. Composites Science and Technology, 58, 815-827. crossref(new window)

Du, J. H., Bai, J., and Cheng, H. M. (2007). The present status and key problems of carbon nanotube based polymer composites. Express Polymer Letters, 1, 253-273. crossref(new window)

Fan, Z. and Advani, S. G. (2005). Characterization of orientation state of carbon nanotubes in shear flow. Polymer, 46, 5232-5240. crossref(new window)

Fan, Z., Santare, M. H., and Advani, S. G. (2008). Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 39, 540-554. crossref(new window)

Fiedler, B., Gojny, F. H., Wichmann, M. H. G., Nolte, M. C. M., and Schulte, K. (2006). Fundamental aspects of nanoreinforced composites. Composites Science and Technology, 66, 3115-3125. crossref(new window)

Ganguli, S., Bhuyan, M., Allie, L., and Aglan, H. (2005). Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy. Journal of Materials Science, 40, 3593-3595. crossref(new window)

Garcia, E. J., Wardle, B. L., and John Hart, A. (2008a). Joining prepreg composite interfaces with aligned carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 39, 1065-1070. crossref(new window)

Garcia, E. J., Wardle, B. L., John Hart, A., and Yamamoto, N. (2008b). Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Composites Science and Technology, 68, 2034-2041. crossref(new window)

Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S. V., van Vuure, A. W., Gorbatikh, L., Moldenaers, P., and Verpoest, I. (2009). Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/ epoxy composites. Carbon, 47, 2914-2923. crossref(new window)

Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Bauhofer, W., and Schulte, K. (2005a). Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites Part A: Applied Science and Manufacturing, 36, 1525-1535. crossref(new window)

Gojny, F. H., Wichmann, M. H. G., Fiedler, B., and Schulte, K. (2005b). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study. Composites Science and Technology, 65, 2300-2313. crossref(new window)

Green, K. J., Dean, D. R., Vaidya, U. K., and Nyairo, E. (2009). Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Composites Part A: Applied Science and Manufacturing, 40, 1470-1475. crossref(new window)

Gryshchuk, O., Karger-Kocsis, J., Thomann, R., Konya, Z., and Kiricsi, I. (2006). Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins. Composites Part A: Applied Science and Manufacturing, 37, 1252-1259. crossref(new window)

Hirai, Y., Hamada, H., and Kim, J. K. (1998a). Impact response of woven glass-fabric composites - I. Effect of fibre surface treatment. Composites Science and Technology, 58, 91-104. crossref(new window)

Hirai, Y., Hamada, H., and Kim, J. K. (1998b). Impact response of woven glass-fabric composites - II. Effect of temperature. Composites Science and Technology, 58, 119- 128. crossref(new window)

Hiroi, R., Ray, S. S., Okamoto, M., and Shiroi, T. (2004). Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide. Macromolecular Rapid Communications, 25, 1359-1364. crossref(new window)

Hojo, M., Ando, T., Tanaka, M., Adachi, T., Ochiai, S., and Endo, Y. (2006a). Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. International Journal of Fatigue, 28, 1154-1165. crossref(new window)

Hojo, M., Matsuda, S., Tanaka, M., Ochiai, S., and Murakami, A. (2006b). Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates. Composites Science and Technology, 66, 665-675. crossref(new window)

Hosur, M. V., Mohammed, A. A., Zainuddin, S., and Jeelani, S. (2008). Processing of nanoclay filled sandwich composites and their response to low-velocity impact loading. Composite Structures, 82, 101-116. crossref(new window)

Hsiao, K. T., Alms, J., and Advani, S. G. (2003). Use of epoxy/ multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology, 14, 791-793. crossref(new window)

Hung, K. H., Tzeng, S. S., Kuo, W. S., Wei, B., and Ko, T. H. (2008). Growth of carbon nanofibers on carbon fabric with Ni nanocatalyst prepared using pulse electrodeposition. Nanotechnology, 19, 295602. crossref(new window)

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58. crossref(new window)

Inam, F., Wong, D. W. Y., Kuwata, M., and Peijs, T. (2010). Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. Journal of Nanomaterials, 2010, 453420.

Iqbal, K., Khan, S. U., Munir, A., and Kim, J. K. (2009). Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Composites Science and Technology, 69, 1949- 1957. crossref(new window)

Isayev, A. I., Kumar, R., and Lewis, T. M. (2009). Ultrasound assisted twin screw extrusion of polymer-nanocomposites containing carbon nanotubes. Polymer, 50, 250-260. crossref(new window)

Joshi, M. and Butola, B. S. (2004). Polymeric nanocomposites-polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. Journal of Macromolecular Science-Polymer Reviews, 44, 389-410. crossref(new window)

Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., and Paipetis, A. (2009). Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. Journal of Composite Materials, 43, 977- 985. crossref(new window)

Kepple, K. L., Sanborn, G. P., Lacasse, P. A., Gruenberg, K. M., and Ready, W. J. (2008). Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon, 46, 2026-2033. crossref(new window)

Khan, S. U., Iqbal, K., Munir, A., and Kim, J. K. (2011a). Quasi-static and impact fracture behaviors of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 42, 253-264. crossref(new window)

Khan, S. U. and Kim, J. K. (2011). Interlaminar shear properties of CFRP composites with CNF-bucky paper interleaves. The 18th International Conference on Composite Materials, Jeju, Korea.

Khan, S. U., Li, C. Y., Siddiqui, N. A., and Kim, J. K. (2011b). Vibration damping characteristics of carbon fiber-reinforced composite containing multi-walled carbon nanotubes. Composites Science and Technology In press.

Khan, S. U., Munir, A., Hussain, R., and Kim, J. K. (2010). Fatigue damage behaviors of carbon fiber-reinforced epoxy composites containing nanoclay. Composites Science and Technology, 70, 2077-2085. crossref(new window)

Kim, J. K., Baillie, C., Poh, J., and Mai, Y. W. (1992). Fracture toughness of CFRP with modified epoxy resin matrices. Composites Science and Technology, 43, 283-297. crossref(new window)

Kim, J. K. (1998). Methods for improving impact damage resistance of CFRPs. Key Engineering Materials, 141-143, 149-168. crossref(new window)

Kim, J. K., MacKay, D. B., and Mai, Y. W. (1993). Dropweight impact damage tolerance of CFRP with rubbermodified epoxy matrix. Composites, 24, 485-494. crossref(new window)

Kim, J. K. and Mai, Y. W. (1998). Engineered Interfaces in Fiber Reinforced Composites. 1st ed. New York: Elsevier Sciences.

Kim, J. K. and Sham, M. L. (2000). Impact and delamination failure of woven-fabric composites. Composites Science and Technology, 60, 745-761. crossref(new window)

Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., and Paipetis, A. (2010). Impact and afterimpact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Composites Science and Technology, 70, 553-563. crossref(new window)

Li, J. and Kim, J. K. (2007). Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Composites Science and Technology, 67, 2114-2120. crossref(new window)

Li, Y., Hori, N., Arai, M., Hu, N., Liu, Y., and Fukunaga, H. (2009). Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Composites Part A: Applied Science and Manufacturing, 40, 2004-2012. crossref(new window)

Liao, F. S., Su, A. C., and Hsu, T. C. J. (1994). Vibration damping of interleaved carbon fiber-epoxy composite beams. Journal of Composite Materials, 28, 1840-1854. crossref(new window)

Ma, P. C. and Kim, J. K. (2011). Carbon Nanotubes for Polymer Reinforcement. Boca Raton, FL: Taylor & Francis.

Ma, P. C., Kim, J. K., and Tang, B. Z. (2007). Effects of silane functionalization on the properties of carbon nanotube/ epoxy nanocomposites. Composites Science and Technology, 67, 2965-2972. crossref(new window)

Ma, P. C., Siddiqui, N. A., Marom, G., and Kim, J. K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 41, 1345-1367. crossref(new window)

Ma, P. C., Wang, S. Q., Kim, J. K., and Tang, B. Z. (2009). In-situ amino functionalization of carbon nanotubes using ball milling. Journal of Nanoscience and Nanotechnology, 9, 749-753. crossref(new window)

Meguid, S. A. and Sun, Y. (2004). On the tensile and shear strength of nano-reinforced composite interfaces. Materials and Design, 25, 289-296. crossref(new window)

Mohanty, A. K., Wibowo, A., Misra, M., and Drzal, L. T. (2003). Development of Renewable Resource-Based Cellulose Acetate Bioplastic: Effect of Process Engineering on the Performance of Cellulosic Plastics. Polymer Engineering and Science, 43, 1151-1161. crossref(new window)

Moniruzzaman, M., Du, F., Romero, N., and Winey, K. I. (2006). Increased flexural modulus and strength in SWNT/ epoxy composites by a new fabrication method. Polymer, 47, 293-298. crossref(new window)

Mouritz, A. P. (2007). Review of z-pinned composite laminates. Composites Part A: Applied Science and Manufacturing, 38, 2383-2397. crossref(new window)

Mouritz, A. P., Bannister, M. K., Falzon, P. J., and Leong, K. H. (1999). Review of applications for advanced threedimensional fibre textile composites. Composites Part A: Applied Science and Manufacturing, 30, 1445-1461. crossref(new window)

Mylavarapu, P. and Woldesenbet, E. (2010). Effect of nanoclay incorporation on the impact properties of adhesively bonded composite structures. Journal of Adhesion Science and Technology, 24, 389-405. crossref(new window)

Nussbaumer, R. J., Caseri, W. R., and Smith, P. (2006). Reversible photochromic properties of TiO2-polymer nanocomposites. Journal of Nanoscience and Nanotechnology, 6, 459-463.

Qian, H., Bismarck, A., Greenhalgh, E. S., Kalinka, G., and Shaffer, M. S. P. (2008). Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level. Chemistry of Materials, 20, 1862- 1869. crossref(new window)

Qiu, J., Zhang, C., Wang, B., and Liang, R. (2007). Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology, 18, 275708. crossref(new window)

Rao, C. N. R., Deepak, F. L., Gundiah, G., and Govindaraj, A. (2003). Inorganic nanowires. Progress in Solid State Chemistry, 31, 5-147. crossref(new window)

Reeder, J. R. (1995). Stitching vs. a toughened matrix: compression strength effects. Journal of Composite Materials, 29, 2464-2487. crossref(new window)

Rojas-Chapana, J. A. and Giersig, M. (2006). Multi-walled carbon nanotubes and metallic nanoparticles and their application in biomedicine. Journal of Nanoscience and Nanotechnology, 6, 316-321.

Romhany, G. and Szebenyi, G. (2009). Interlaminar crack propagation in MWCNT/fiber reinforced hybrid composites. Express Polymer Letters, 3, 145-151. crossref(new window)

Sadeghian, R., Gangireddy, S., Minaie, B., and Hsiao, K. T. (2006). Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Composites Part A: Applied Science and Manufacturing, 37, 1787-1795. crossref(new window)

Sager, R. J., Klein, P. J., Lagoudas, D. C., Zhang, Q., Liu, J., Dai, L., and Baur, J. W. (2009). Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Composites Science and Technology, 69, 898-904. crossref(new window)

Siddiqui, N. A., Khan, S. U., Li, C. Y., Ma, P. C., and Kim, J. K. (2011). Manufacturing and characterization of CFRP prepregs containing carbon nanotubes. Composites Part A: Applied Science and Manufacturing In press.

Siddiqui, N. A., Woo, R. S. C., Kim, J. K., Leung, C. C. K., and Munir, A. (2007). Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 38, 449-460. crossref(new window)

Singh, S. and Partridge, I. K. (1995). Mixed-mode fracture in an interleaved carbon-fibre/epoxy composite. Composites Science and Technology, 55, 319-327. crossref(new window)

Spitalsky, Z., Tasis, D., Papagelis, K., and Galiotis, C. (2010). Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science (Oxford), 35, 357-401. crossref(new window)

Steeves, C. A. and Fleck, N. A. (2006). In-plane properties of composite laminates with through-thickness pin reinforcement. International Journal of Solids and Structures, 43, 3197-3212. crossref(new window)

Sun, L., Warren, G. L., and Sue, H. J. (2010). Partially cured epoxy/SWCNT thin films for the reinforcement of vacuumassisted resin-transfer-molded composites. Carbon, 48, 2364-2367. crossref(new window)

Thostenson, E. T., Li, W. Z., Wang, D. Z., Ren, Z. F., and Chou, T. W. (2002). Carbon nanotube/carbon fiber hybrid multiscale composites. Journal of Applied Physics, 91, 6034- 6037. crossref(new window)

Thostenson, E. T., Ren, Z., and Chou, T. W. (2001). Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 61, 1899-1912. crossref(new window)

Tjong, S. C. (2006). Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering R: Reports, 53, 73-197. crossref(new window)

Tong, L., Mouritz, A. P., and Bannister, M. K. (2002). 3D Fibre Reinforced Polymer Composites. Boston: Elsevier. pp. 1-12.

Tong, L., Sun, X., and Tan, P. (2008). Effect of long multiwalled carbon nanotubes on delamination toughness of laminated composites. Journal of Composite Materials, 42, 5-23.

Tsantzalis, S., Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., Tanimoto, T., and Friedrich, K. (2007). On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles. Composites Part A: Applied Science and Manufacturing, 38, 1159-1162. crossref(new window)

Tugrul Seyhan, A., Tanoglu, M., and Schulte, K. (2008). Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Engineering Fracture Mechanics, 75, 5151-5162. crossref(new window)

Veedu, V. P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., Ajayan, P. M., and Ghasemi-Nejhad, M. N. (2006). Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nature Materials, 5, 457-462. crossref(new window)

Wang, S. J., Geng, Y., Zheng, Q., and Kim, J. K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815-1823. crossref(new window)

Warrier, A., Godara, A., Rochez, O., Mezzo, L., Luizi, F., Gorbatikh, L., Lomov, S. V., VanVuure, A. W., and Verpoest, I. (2010). The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A: Applied Science and Manufacturing, 41, 532-538. crossref(new window)