Advanced SearchSearch Tips
Influence of Compressibility Modification to k-ε Turbulence Models for Supersonic Base Flow
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Influence of Compressibility Modification to k-ε Turbulence Models for Supersonic Base Flow
Jeon, Sang-Eon; Park, Soo-Hyung; Byun, Yung-Hwan; Kwon, Jang-Hyuk;
  PDF(new window)
An improvement to the k- turbulence model is presented and is shown to lead to better agreement with data regarding supersonic base flows. The improvement was achieved by imposing a grid-independent realizability constraint in the Launder-Sharma k- model. The effects of compressibility were also examined. The numerical results show that the modified Launder-Sharma model leads to some improvement in the prediction of the velocity and turbulent kinetic energy profiles. Compressibility corrections also lead to better agreement in both the turbulent kinetic energy and the Reynolds stress profiles with the experimental data.
Computational Fluid Dynamics;Turbulence Model;Compressibility Modification;Supersonic Base Flow;
 Cited by
거스트 영향이 고려된 랜덤 분포 풍하중에 대한 대형 샌드위치 패널 구조물의 유체-구조 연성해석,박대웅;

한국소음진동공학회논문집, 2013. vol.23. 12, pp.1035-1044 crossref(new window)
Fluid-structure Interaction Analysis of Large Sandwich Panel Structure for Randomly Distributed Wind Load considering Gust Effects, Transactions of the Korean Society for Noise and Vibration Engineering, 2013, 23, 12, 1035  crossref(new windwow)
Herrin, J. L., and Dutton, J. C., "Supersonic Base Flow Experiments in the Near Wake of a Cylindrical Afterbody", AIAA Journal, Vol. 32, No. 1, 1994, pp. 77-83. crossref(new window)

Sahu, J., "Numerical Computations of Supersonic Base Flow with Special Emphasis on Turbulence Modeling", AIAA Journal, Vol. 32, No. 7, 1994, pp. 1547-1549. crossref(new window)

Krishnamurty, V. S., and Shyy, W., "Study of Compressibility Modifications to the k-$\varepsilon$ Turbulence Model", Physics of Fluids, Vol. 9, No. 9, 1997, pp. 2769-2788. crossref(new window)

Sarkar, S., "The Pressure-Dilatation Correlation in Compressible Flows", Physics of Fluids A, Vol. 4, 1992, pp. 2674-2682. crossref(new window)

Wilcox, D. C., "Dilatation-Dissipation Corrections for Advanced Turbulence Models", AIAA Journal, Vol. 30, No. 11, 1992, pp. 2639-2646. crossref(new window)

Ristorcelli, J. R., "A Pseudo-Sound Constitutive Relationship for the Dilatational Covariances in Compressible Turbulence", Journal of Fluid Mechanics, Vol. 347, 1997, pp. 37-70. crossref(new window)

Bradshaw, P., Ferriss, D. H., and Atwell, N. P., "Calculation of Boundary-Layer Development Using the Turbulent Energy Equation", Journal of Fluid Mechanics, Vol. 28, No. 3, 1967, pp. 593-616. crossref(new window)

Coakley, T. J., "Turbulence Modeling Methods for the Compressible Navier-Stokes Equations", AIAA Paper 83-1693, 16th AIAA Fluid and Plasma Dynamics Conference, Danvers, MA, June 1983.

Durbin, P. A., "On the k-$\varepsilon$ Stagnation Point Anomaly", International Journal of Heat and Fluid Flow, Vol. 17, No. 1, 1996, pp. 89-90. crossref(new window)

Thivet, F., "Lessons Learned from RANS Simulations of Shock-Wave/Boundary-Layer Interactions", AIAA Paper 2002-0583, 40th AIAA Aerospace Sciences meeting & Exhibit, Reno, NV, Jan. 2002.

Park, S. H., and Kwon, J. H., "Implementation of k-$\omega$ Turbulence Models in an Implicit Multigrid Method", AIAA Journal, Vol. 42, No. 7, 2004, pp. 1348-1357. crossref(new window)

Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications", AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598-1605. crossref(new window)

Launder, B. E., and Sharma, B. I., "Application of the Energy Dissipation Model of Turbulence to the Calculation of Flows near a Spinning Disk", Letters in Heat and Mass Transfer, Vol. 1, 1974, pp. 131-138.

Gerolymos, G. A., "Implicit Multiple-Grid Solution of the Compressible Navier-Stokes Equations using k-$\varepsilon$ Turbulence Closure", AIAA Journal, Vol. 28, No. 10, 1990, pp. 1707-1717. crossref(new window)

Craft, T. J., Launder, B. E., and Suga, K., "Development and Application of a Cubic Eddy-Viscosity Model of Turbulence", International Journal of Heat and Fluid Flow, Vol. 17, 1996, pp. 108-115. crossref(new window)

Barakos, G., and Drikakis, D., "Numerical Simulation of Transonic Buffet Flows using Various Turbulence Closures", International Journal of Heat and Fluid Flow, Vol. 21, 2000, pp. 620-626. crossref(new window)

Wilcox, D. C., "Reassessment of the Scale-Determining Equation for Advanced Turbulence Models", AIAA Journal, Vol. 26, No. 11, 1988, pp. 1299-1310. crossref(new window)

Thivet, F. Knight, D. D., Zheltovodov, A. A., and Maksimov, A. I., "Insights in Turbulence Modeling for Crossing-Shock-Wave/Boundary-Layer Interactions", AIAA Journal, Vol. 39, No. 6, 2001, pp. 985-995. crossref(new window)

Park, S. H., and Kwon, J. H., "On the Dissipation Mechanism of Godunov-Type Schemes", Journal of Computational Physics, Vol. 188, No. 2, 2003, pp. 524-542. crossref(new window)

Anderson, W. K., Tomas, J. L., and Van Leer, B., "Comparison of Finite Volume Flux Vector Splittings for the Euler Equations", AIAA Journal, Vol. 24, No. 9, 1986, pp. 1453- 1460. crossref(new window)

Liu, F., and Zheng, X., "A Strongly Coupled Time- Marching Method for Solving the Navier-Stokes and k-$\omega$ Turbulence Model Equations with Multi-grid", Journal of Computational Physics, Vol. 128, No. 2, 1996, pp. 289-300. crossref(new window)

Wilcox, D. C., Turbulence Modeling for CFD, 2nd edition, DCW Industries, La Canada, CA, 1998.