JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Novel Nonlinear Robust Guidance Law Design Based On SDRE Technique
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Novel Nonlinear Robust Guidance Law Design Based On SDRE Technique
Moosapour, Seyyed Sajjad; Alizadeh, Ghasem; Khanmohammadi, Sohrab; Moosapour, Seyyed Hamzeh;
  PDF(new window)
 Abstract
A nonlinear robust guidance law is designed for missiles against a maneuvering target by incorporating sliding-mode and optimal control theories based on the state dependent Riccati equation (SDRE) to achieve robustness against target accelerations. The guidance law is derived based on three-dimensional nonlinear engagement kinematics and its robustness against disturbances is proved by the second method of Lyapunov. A new switching surface is considered in the sliding-mode control design. The proposed guidance law requires the maximum value of the target maneuver, and therefore opposed to the conventional augmented proportional navigation guidance (APNG) law, complete information about the target maneuver is not necessary, and hence it is simple to implement in practical applications. Considering different types of target maneuvers, several scenario simulations are performed. Simulation results confirm that the proposed guidance law has much better robustness, faster convergence, and smaller final time and control effort in comparison to the sliding-mode guidance (SMG) and APNG laws.
 Keywords
guidance;optimal control;robustness;sliding-mode;
 Language
English
 Cited by
1.
Capturability of Augmented Pure Proportional Navigation Guidance Against Time-Varying Target Maneuvers, Journal of Guidance, Control, and Dynamics, 2014, 37, 5, 1446  crossref(new windwow)
 References
1.
Cho, H., Ryoo, C. K., and Tahk, M.-J., "Closed-form optimal guidance law for missiles of time-varying velocity", Journal of Guidance, Control, and Dynamics, Vol. 19, No 5, 1996, pp. 1017-1023. DOI:10.2514/3.21740. crossref(new window)

2.
Yaesh, I., and Ben-Asher, J. Z., "Optimal guidance with a single uncertain time lag", Journal of Guidance Control and Dynamics, Vol. 18, No. 5, 1995, pp. 981-988. DOI:10.2514/3.21494. crossref(new window)

3.
Hough, M. E., "Optimal guidance and nonlinear estimation for interception of decelerating targets", Journal of Guidance, Control, and Dynamics, Vol. 18, No. 2, 1995, pp. 316-324. DOI:10.2514/3.21386. crossref(new window)

4.
Hough, M. E., "Optimal guidance and nonlinear estimation for interception of accelerating targets," Journal of Guidance, Control, and Dynamics, Vol. 18, No. 5, 1995, pp. 961-968. DOI:10.2514/3.21491. crossref(new window)

5.
Ben-Asher, J. Z. and Yaesh, I., "Optimal guidance with reduced sensitivity to time-to-go estimation errors", Journal of Guidance, Control, and Dynamics, Vol. 20, No. 1, 1997, pp. 158-163. DOI: 10.2514/2.4010. crossref(new window)

6.
Rusnak, I. and Meir, L., "Optimal guidance for acceleration constrained missile and maneuvering target", IEEE Transactions on Aerospace and Electronic Systems, Vol. 26, No. 4, 1991, pp. 618-624. DOI:10.2514/3.20679. crossref(new window)

7.
Green, J., Shinar, J., and Guelman, M., "Game optimal guidance law synthesis for short range missiles", Journal of Guidance, Control, and Dynamics, Vol. 15, No. 1, 1992, pp. 191-197. DOI: 10.2514/3.20818 crossref(new window)

8.
Massoumnia, M. A., "Optimal midcourse guidance law for fixed-interval propulsive maneuvers", Journal of Guidance, Control, and Dynamics, Vol. 18, No. 3, 1995, pp. 465-470. DOI:10.2514/3.21410. crossref(new window)

9.
Ben-Asher, J. Z., and Yaesh, I., Advances in missile guidance theory, Progress in Astronautics and Aeronautics, AIAA, New York, 1998.

10.
Pastrik, H. L., Seltzer, S. M., and Warren, M. E., "Guidance laws for short-range tactical missiles", Journal of Guidance, Control, and Dynamics, Vol. 4, No. 2, 1981, pp. 98-108. DOI:10.2514/3.56060. crossref(new window)

11.
Slotine, E. J.-J., and Li, W., Applied nonlinear control, Prentice-Hall, Englewood Cliffs, NJ, 1991.

12.
Fernandez, R. B., and Hedrick, J. K., "Control of multivariable nonlinear systems by the sliding-mode method", International Journal of Control, Vol. 46, No. 3, 1987, pp. 1019-1040. DOI:10.1080/00207178708547410. crossref(new window)

13.
Brierley, S., and Longchamp, R., "Application of sliding-mode control to air-air interception problem", IEEE Transactions on Aerospace and Electronic Systems, Vol. 26, No. 2, 1990, pp. 306-325. DOI:10.1109/7.53460. crossref(new window)

14.
Yeh, F.-K, "Adaptive-sliding-mode guidance law design for missiles with thrust vector control and divert control system", Journal of Control Theory & Applications, IET, Vol. 6, No. 4, 2012, pp. 552- 559. DOI: 10.1049/iet-cta.2011.0227 crossref(new window)

15.
Lee, C.-H, Kim, T.-H, Tahk, M.-J, and Kim, K.-S., "Design of guidance law for passive homing missile using sliding mode control", International Conference on Control Automation and Systems, Gyeonggi-do, Korea, 2010.

16.
Zhou, D., Mu, C., Ling, Q., and Xu, W., "Optimal sliding-mode guidance of homing-missile", Proceedings of the 38th IEEE Conference Decision and Control, Phoenix, AZ, 1999, pp. 5131-5136.

17.
Bahrami, M., Ebrahimi, B., and Roshanian, J., "Optimal sliding-mode guidance law for fixed-interval propulsive maneuvers", Proceedings of IEEE Conference on Control Application, Munich, Germany, 2006.

18.
Ebrahimi, B., Bahrami, M., and Roshanian, J, "Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers", Acta Astronautica, Vol. 62, No. 10, 2008, pp. 556-562. DOI:10.1016/j.actaastro.2008.02.002. crossref(new window)

19.
Erdem, E. B., and Alleyne, A. G., "Design of a class of nonlinear controllers via State Dependent Riccati Equations", IEEE Transactions on Control Systems Technology, Vol. 12, No. 1, 2004, pp. 133-137. DOI:10.1109/TCST.2003.819588. crossref(new window)

20.
Hammett, K. D., "Control of nonlinear systems via state feedback SDRE techniques", Ph.D. dissertation, Faculty of the Graduate School of Engineering of the Air Force institute of Technology, Wright-Patterson AFB, Ohio, 1997.

21.
Mracek, C. P., and Cloutier, J. R., "Control designs for the nonlinear benchmark problem via the State-Dependent Riccati Equation method", International Journal of Robust Nonlinear Control, Vol. 8, No. 4, 1998, pp. 401-433. DOI:10.1002/(SICI)1099-1239(19980415/30)8:4/5<401::AID RNC361>3.0.CO;2-U. crossref(new window)

22.
Cloutier, J. R., "State-dependent Riccati equation techniques: An overview", Proceedings of the American Control Conference, Albuquerque, NM, 1997.

23.
Zarchan, P., Tactical and strategic missile guidance, 3rd ed., Progress in Astronautics and Aeronautics, AIAA, New York, 1997.