JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Hypersonic Aerothermodynamics: Past, Present and Future
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Hypersonic Aerothermodynamics: Past, Present and Future
Park, Chul;
  PDF(new window)
 Abstract
This is a written version of the keynote speech delivered at the International Symposium on Hypersonic Aerothermodynamics - Recent Advances held in Bangalore, India, from December to , 2012. In this document, what was accomplished in the past, the present status, and what is expected in the future in the field of hypersonic aerothermodynamics are reviewed. Solved problems are categorized into four items; unsolved problems into twelve items, and emerging problems into four items. Removing one degree uncertainty in trim angle of attack, studying the thermochemical phenomena in a hydrogen-helium-methane mixture, and entry flights of meteoroids are cited as the tasks for the future.
 Keywords
Hypersonics;aerothermoynamics;chemical kinetics;two-temperature model;
 Language
English
 Cited by
1.
Compromise Optimal Design using Control-based Analysis of Hypersonic Vehicles,;;

International Journal of Aeronautical and Space Sciences, 2015. vol.16. 2, pp.137-147 crossref(new window)
1.
Rovibrational energy transfer and dissociation in O2–O collisions, The Journal of Chemical Physics, 2016, 144, 10, 104301  crossref(new windwow)
2.
Compromise Optimal Design using Control-based Analysis of Hypersonic Vehicles, International Journal of Aeronautical and Space Sciences, 2015, 16, 2, 137  crossref(new windwow)
3.
Computationally Efficient Assessments of the Effects of Radiative Transfer, Turbulence Radiation Interactions, and Finite Rate Chemistry in the Mach 20 Reentry F Flight Vehicle, Journal of Computational Engineering, 2016, 2016, 1  crossref(new windwow)
4.
A quasi-one-dimensional model for hypersonic reactive flow along the stagnation streamline, Chinese Journal of Aeronautics, 2016  crossref(new windwow)
 References
1.
Park, C., Nonequilibrium Hypersonic Aerothermodynamics, John Wiley and Sons, New York, NY, 1990, pp.306-312.

2.
Park, C., Nonequilibrium Hypersonic Aerothermodynamics, John Wiley and Sons, New York, NY, 1990, 312-316.

3.
Sharma, S. P. and Gillespie, W., "Nonequilibrium and Equilibrium Shock Front Radiation Measurements," Journal of Thermophysics and Heat Transfer, Vol. 5, No. 3, 1991, pp. 257-265. crossref(new window)

4.
Park, C., Nonequilibrium Hypersonic Aerothermodynamics, John Wiley and Sons, New York, NY, 1990, p.281.

5.
Kim, J. G., and Boyd, I., "Master Equation Analysis of Thermochemical Nonequilibrium of Nitrogen," 43rd AIAA Thermophysics Conference, New Orleans AIAA Paper 2012-3305, 2012.

6.
Park, C., Nonequilibrium Hypersonic Aerothermodynamics, John Wiley and Sons, New York, NY, 1990, pp.89-92.

7.
Holden, M. S., Wadhams, T. P., MacLean, M., Dufrene, A., Mundy, E., and Marineau, E., "A Review of Basic Research and Development Programs Conducted in the LENS Facilities in Hypervelocity Flows," 50th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, AIAA Paper 2012-169, 2012..

8.
Furudate, M., Nonaka, S., and Sawada, K., "Behavior of Two-Temperature Model in Intermediate Hypersonic Regime," Journal of Thermophysics and Heat Transfer, Vol. 13, No. 4, 1999, pp. 424-430. crossref(new window)

9.
Fujita, K., Sato, S., Abe, T., and Ebinuma, Y., "Experimental Investigation of Air Radiation From Behind a Strong Shock Wave," Journal of Thermophysics and Heat Transfer, Vol. 16, No. 1, 2002, pp. 77-82. crossref(new window)

10.
Dankert, C., "Rarefied Flow Investigation in Gas- Surface Interaction and Supersonic Plumes," Colloquium on Nonequilibrium Phenomena of Low-Density Jets in Space, Kyoto University, 1998, pp.51-60.

11.
Park, C., "Rotational Relaxation of $N_{2}$ Behind a Strong Shock Wave," Journal of Thermophysics and Heat Transfer, Vol. 18, No. 4, 2004, pp.527-533. crossref(new window)

12.
Matsuyama, S., Ohnishi, N., Sasoh, A., and Sawada, K., "Numerical Simulation of Galileo Probe Entry Flowfield With Radiation and Ablation," Journal of Thermophysics and Heat Transfer, Vol. 19, No. 1, 2005, pp.28-35. crossref(new window)

13.
Park, C., "Stagnation-Region Heating Environment of the Galileo Probe," Journal of Thermophysics and Heat Transfer, Vol. 23, No. 3, 2009, pp.417-424. crossref(new window)

14.
Park, C., "Nonequilibrium Chemistry and Radia-tion for Neptune Entry," Journal of Spacecraft and Rockets, Vol. 48, No. 6, 2011, pp.897-903. crossref(new window)

15.
Leibowitz, L. P., "Measurement of the Structure of an Ionizing Shock Wave in a Hydrogen-Helium Mixture," The Physics of Fluids, Vol. 16, No. 1, 1973, pp.59-68. crossref(new window)

16.
Livingston, F. R., and Poon, T. Y., "Relaxation Distance and Equilibrium Electron Density Measurements in Hydrogen-Helium Plasmas," AIAA Journal, Vol. 14, No. 9, 1976, pp.1335-1337. crossref(new window)

17.
Bogdanoff, D. W., and Park, C., "Radiative Interaction Between Driver and Driven Gases in an Arc-Driven Shock Tube," Shock Waves, Vol. 12, No. 1, 2002, pp.205-214. crossref(new window)

18.
Omura, M., and Presley, L. L., "Electron Density Measurements Ahead of Shock Waves in Air," AIAA Journal, Vol. 7, No. 12, 1969, pp.2363-2365. crossref(new window)

19.
Park, C., Nonequilibrium Hypersonic Aer-othermodynamics, John Wiley and Sons, New York, NY, 1990, pp.303- 306.

20.
Wada, Y., Watanabe, Y., Akimoto, T., and Yasui, H. "Data Analysis of Electrostatic Probe," Proceedings of HOPE/ OREX Workshop (in Japanese), Tokyo, paper F-2, 1994.

21.
Park, C., "Injection-Induced Turbulence in Stagnation- Point Boundary Layers," AIAA Journal, Vol. 22, No. 2, 1984, pp.219-225. crossref(new window)