JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Patch-type large strain sensor using elastomeric composite filled with carbon nanofibers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Patch-type large strain sensor using elastomeric composite filled with carbon nanofibers
Yasuoka, Tetsuo; Shimamura, Yoshinobu; Todoroki, Akira;
  PDF(new window)
 Abstract
Carbon nanofibers (CNFs) are electrically conductive. When CNFs are used as fillers in resin, this electrical conductivity can be yielded without adversely affecting the mechanical properties of the resin. When an elastomer is adopted as the resin, a conductive elastomer can then be produced. Due to its flexibility and conductive properties, a large strain sensor based on changes in resistivity may be produced, for strain sensing in flexible structures. In this study, a patch-type large strain sensor using resistivity change in a CNF/elastomer composite was proposed. The measurement limits of the sensor were investigated experimentally, and the limit was found to be 40%, which greatly exceeded the limits of conventional metal-foiled strain gages. Also, the proposed CNF/elastomer large strain sensor can be used to measure flexible materials, while conventional strain gages cannot be used to measure such strains.
 Keywords
nanocomposite;carbon nanofiber;strain sensing;elastomer;
 Language
English
 Cited by
1.
Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection, ACS Sensors, 2016, 1, 6, 817  crossref(new windwow)
2.
Flexible impedance and capacitive tensile load Sensor based on CNT composite, Chinese Physics B, 2016, 25, 2, 028801  crossref(new windwow)
 References
1.
Katsumata, M., Yamanashi, H., Ushijima H., and Endo M., "Electrical resistance of electroconductive plastic composite with carbon fiber filler", Electrical Engineering in Japan, Vol. 114, Issue 5, 1994, pp. 17-23.

2.
Katsumata, M., Endo M., and Ushijima H., "Epoxy composites using vapor-grown carbon fiber fillers for advanced electroconductive adhesive agents" Journal of Materials Research, Vol. 9, No. 4, 1994, pp. 841-843. crossref(new window)

3.
Abraham, J. K., Philip, B., Witchurch, A., Varadan, V. K., and Reddy, C. C., "A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor", Smart Materials and Structures, Vol. 13, Issue 5, 2004, pp. 1045-1049. crossref(new window)

4.
Yoon, H., Xie, J., Abraham, J. K., Varadan, V. K., and Ruffin, P. B., "Passive wireless sensors using electrical transition of carbon nanotube junctions in polymer matrix", Smart Materials and Structures, Vol. 15, Issue 5, 2006, pp. S14-S20. crossref(new window)

5.
Sandler, J., Shaffer, M. S. P., Prasse, T., Bauhofer, W., Schulte, K. and Windle, A. H., "Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties", Polymer, Vol. 40, Issue 21, 1999, pp. 5967-5971. crossref(new window)

6.
Benoit, J. M., Corraze, B., Lefrant, S., Blau, W. J., Bernier, P., and Chauvet, O., "Transport properties of PMMA-carbon nanotubes composites", Synthetic Metals, Vol. 121, No. 1-3, 2001, pp. 1215-1216. crossref(new window)

7.
Kilbride, B. E., Coleman, J. N., Fraysse, J., Fournet, P., Cadek, M., Drury, A., Hultzler, S., Roth, S., and Blau, W. J., "Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films", Journal of Applied Physics, Vol. 92, Issue 7, 2002, pp. 4024-4030. crossref(new window)

8.
Barrau, S., Demont, P., Peigney, A., Laurent, C., and Lacabanne, C., "DC and AC conductivity of carbon nanotubes-polyepoxy composites", Macromolecules, Vol. 36, No. 14, 2003, pp. 5187-5194. crossref(new window)

9.
Rul, S., Lefevre-Schlick, F., Capria, E., Laurent, C., and Peigney, A., "Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites", Acta Materialia, Vol. 52, Issue 4, 2004, pp. 1061-1067. crossref(new window)

10.
Du, F., Fischer, J. E., and Winey, K. I., "Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites", Phys. Rev. B, Vol. 72, Issue 12, 2005, p. 121404. crossref(new window)

11.
Gordeyev, S. A., Macedo, F. J., Ferreira, J. A., van Hattum, F. W. J., and Bernardo, C. A., "Transport properties of polymer-vapour grown carbon fibre composites", Physica B, Vol. 279, Issues 1-3, 2000, pp. 33-36. crossref(new window)

12.
Finegan, I. C., and Tibbetts, G. G., "Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites", J. Mater. Res., Vol. 16, Issue 6, 2001, pp. 1668- 1674. crossref(new window)

13.
Wu, S. H., Toshiaki, N., Kurashiki, K., Ni, Q. Q., Iwamoto, M., and Fujii, Y., "Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites", Advanced Composite Materials, Vol. 16, Issue 3, 2007, pp. 195-206. crossref(new window)

14.
Enomoto, K., Yasuhara, T., Ohtake, N., and Kato, K., "Injection molding of polystyrene matrix composites filled with vapor grown carbon fiber", JSME International Journal Series A, Vol. 46, No. 3, 2003, pp. 353-358. crossref(new window)

15.
Shimamura, Y., Kageyama, K., Tohgo, K., and Fujii, T., "Cyclic behavior of electrical resistance type low stiffness, large strain sensor by using carbon nanofiber/flexible epoxy composite", Key Engineering Materials, Vol. 462-463, 2011, pp. 1200-1205. crossref(new window)

16.
Park, J. M., Kim, D. S., Lee, J. R., and Kim, T. W., "Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electromicromechanical technique", Materials Science and Engineering: C, Vol. 23, Issues 6-8, 2003, pp. 971-975. crossref(new window)

17.
Oberlin, A., Endo, M., and Koyama, T., "Filamentous growth of carbon through benzene decomposition", Journal of Crystal Growth, Vol. 32, Issue 3, 1976, pp. 335-349. crossref(new window)

18.
Yasuoka, T., Shimamura, Y., and Todoroki, A., "Electrical Resistance Change under Strain of CNF/Flexible- Epoxy Composite", Advanced Composite Materials, Vol. 19, Issue 2, 2010, pp. 123-138. crossref(new window)