JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Landing Dynamic and Key Parameter Estimations of a Landing Mechanism to Asteroid with Soft Surface
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Landing Dynamic and Key Parameter Estimations of a Landing Mechanism to Asteroid with Soft Surface
Zhao, Zhijun; Zhao, JingDong; Liu, Hong;
  PDF(new window)
 Abstract
It is of great significance to utilize a landing mechanism to explore an asteroid. A landing mechanism named ALISE (Asteroid Landing and In Situ Exploring) for asteroid with soft surface is presented. The landing dynamic in the first turning stage, which represents the landing performance of the landing mechanism, is built by a Lagrange equation. Three key parameters can be found influencing the landing performance: the retro-rocket thrust T, damping element damping , and cardan element damping . In this paper, the retro-rocket thrust T is solved with considering that the landing mechanism has no overturning in extreme landing conditions. The damping element damping c1 is solved by a simplified dynamic model. After solving the parameters T and , the cardan element damping is calculated using the landing dynamic model, which is built by Lagrange equation. The validities of these three key parameters are tested by simulation. The results show a stable landing, when landing with the three estimated parameters T, , and . Therefore, the landing dynamic model and methods to estimate key parameters are reasonable, and are useful for guiding the design of the landing mechanism.
 Keywords
asteroid landing mechanism;landing dynamic;landing performance;damping;
 Language
English
 Cited by
 References
1.
Morrison, D., "Asteroid and comet impacts the ultimate environmental catastrophe", Philosophical Transactions of the Royal Society. Vol. 364, No. 1845, 2006, pp. 2041-2054. crossref(new window)

2.
Bland, P. A., and Artemieva, N. A., "The rate of small impacts on earth", Meteoritics and Planetary Science, Vol. 41, No. 4, 2006, pp. 607-631. crossref(new window)

3.
Blessing, M., Quintana, E., Persaud, R., Jeffress, S., "Asteroids working group report" Proceedings of the Next Generation Exploration Conference, Washington, DC, USA, 2006.

4.
Ross, S. D., "Near-earth asteroid mining", Space Industry Report, 2001, pp. 1-24.

5.
Lavendaer, R. E., "Equations for two-dimensional analysis of touch-down dynamics of spacecraft with hinged legs including elastic, damping, and crushing effects", George C. Marshall Space Flight Center, MTP-AERO-63-76, 1963, pp. 1-43.

6.
Irwin, D. C., "Landing dynamics study for lunar landing research vehicle", National Aeronautics and Space Administration, NASA CR-428, 1965, pp. 1-73.

7.
Admire, J., and Mackey, A., "Dynamic analysis of a multi-legged lunar landing vehicle to determine structural loads during touchdown", National Aeronautics and Space Administration, NASA TN-D 2582, 1965, 1-36.

8.
Herr, R. W., Leonard, H. W., "Dynamic model investigation of touchdown stability of lunar-landing vehicles", National Aeronautics and Space Administration, NASA TN D-4215, 1967, pp. 1-25.

9.
Wang, S. C., Deng, Z. Q., Hu, M, Gao, H. B., "Dynamic model building and simulation for mechanical main body of lunar lander", Journal of Central South University, Vol. 12, No.3, 2005, pp. 329-334. crossref(new window)

10.
McLean, C. H., Riesco, M. E., Gravseth, I. J., Dissly, R. W., "Design of a robotic lunar lander for lunar south pole exploration", Proceedings of the AIAA Space 2008 Conference and Exposition, California, USA, 2008.

11.
Walton, W.C., Herr, R. W., and Leonard, H. W., "Studies of touchdown stability for lunar landing vehicles", Journal of Spacecraft and Rockets, Vol.1, No.5, 1964, pp. 552-556. crossref(new window)

12.
Bibring, J.P., Rosenbauer, H., Boehnhardt, H., "The rosetta lander ("PHILAE") investigations", Space Science Reviews, Vol. 128, No. 1-4, 2007, pp. 205-220. crossref(new window)

13.
Biele, J., Ulamec, S., "Capabilities of philae, the rosetta lander", Space Science Reviews, Vol. 138, No. 1-4, 2008, pp. 275-289. crossref(new window)

14.
Yano, H., Kubota, T., Miyamoto, H., et al, "Touchdown of the hayabusa spacecraft at the muses sea on itokawa", Science, Vol. 312, No. 5778, 2006, pp. 1350-1353. crossref(new window)

15.
Erik, A., "Adventures in near-earth object exploration", Science, Vol. 312, No. 5778, 2006, pp. 1328-1329. crossref(new window)

16.
Muirhead, B., Kerridge, S., "The deep space 4/ champollion mission", Proceedings of the 3rd IAA International Conference on Low Cost Planetary Missions, California, USA, 1998.

17.
Hilchenbach, M., Kuechemann, O., Rosenbauer, H., "Impact on a comet: rosetta lander simulations", Planetary and Space Science, Vol. 48, No. 5, 2000, pp. 361-369. crossref(new window)

18.
Lupishko, D. F., Martino, M. D., "Physical properties of near-earth asteroids", Planetary and Space Science, Vol. 46, No.1, 1998, pp. 47-74. crossref(new window)

19.
Yeomans, D., "Small bodies of the solar system", Nature, Vol. 404, No. 6780, 2000, pp. 829-832. crossref(new window)

20.
Ulamec, S., Biele, J., "Surface elements and landing strategies for small bodies missions-philae and beyond", Advance in Space Science, Vol. 44, No. 7, 2009, pp. 847-858. crossref(new window)

21.
Thiel, M., Stocker, J., Rohe, C., et al, "The rosetta lander anchoring system", Proceedings of the 10th European Space Mechanisms and Tribology Symposium, San Sebastian, Spain, 24-26 September 2003, pp. 239-246.

22.
Ghavimi, A. R., Serricchio, F., Hadaegh, F.Y., et al, "Autonomous landing and smart anchoring for insitu exploration of small bodies", Artificial Intelligence, Robotics and Automation in Space, Proceedings of the Fifth International Symposium, ESTEC, Noordwijk, the Netherlands, 1999.