Advanced SearchSearch Tips
Generalized Computational Nodes for Pseudospectral Methods
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Generalized Computational Nodes for Pseudospectral Methods
Kim, Chang-Joo; Park, Soo Hyung; Jung, Sung-Nam; Sung, Sangkyung;
  PDF(new window)
Pseudo-spectral method typically converges at an exponential rate. However, it requires a special set of fixed collocation points (CPs) to get highly accurate formulas for partial integration and differentiation. In this study, computational nodes for defining the discrete variables of states and controls are built independently of the CPs. The state and control variables at each CP, which are required to transcribe an NOCP into the corresponding NLP, are interpolated, using those variables allocated at each node. Additionally, Lagrange interpolation and spline interpolation are investigated, to provide a guideline for selecting a favorable interpolation method. The proposed techniques are applied to the solution of an NOCP using equally spaced nodes, and the computed results are compared to those using the standard PS approach, to validate the usefulness of the proposed methods.
Pseudo-spectral method;computational node;Lagrange interpolation;spline;
 Cited by
Fast and Accurate Analyses of Spacecraft Dynamics Using Implicit Time Integration Techniques,;;;;

International Journal of Control, Automation, and Systems, 2016. vol.14. 2, pp.524-539 crossref(new window)
A Comparative Study of Transcription Techniques for Nonlinear Optimal Control Problems Using a Pseudo-Spectral Method,;;

International Journal of Aeronautical and Space Sciences, 2015. vol.16. 2, pp.264-277 crossref(new window)
Fast and accurate analyses of spacecraft dynamics using implicit time integration techniques, International Journal of Control, Automation and Systems, 2016, 14, 2, 524  crossref(new windwow)
Williams, P., "A Gauss-Lobatto Quadrature Method for Solving Optimal Control Problems," Australian and New Zealand Industrial and Applied Mathematics Journal, Vol. 47, 2005, pp. 101-115.

Fahroo, F. and Ross, I. M., "Costate Estimation by a Legendre Pseudo-spectral Method," AIAA Journal of Guidance, Control and Dynamics, Vol. 24, No. 2, 2001, pp. 270-277. DOI: 10.2514/2.4709 crossref(new window)

Gong, Q., Ross, I. M., Kang, W., and Fahroo, F., "Connections between the Covector Mapping Theorem and Convergence of Pseudo-spectral Methods for Optimal Control," Computational Optimization and Applications, Vol. 41, No. 3, 2008, pp. 307-335. crossref(new window)

Kim, C.-J., Sung, S., and Shin, K., "Pseudo-spectral Application to Nonlinear Optimal Trajectory Generation of a Rotorcraft," The First International Conference on Engineering and Technology Innovation, Kenting, Taiwan, November 11-15, 2011.

Kim, C.-J., Sung, S., Park, S. H., and Jung, S. N., " Time- Scale Separation for Rotorcraft Nonlinear Optimal Control Analyses, "Journal of Guidance, Control and Dynamics, Vol. 37, No. 2, March-April 2014, pp. 655-673.

D. Benson, "A Gauss Pseudo-spectral Transcription for Optimal Control," MIT, Ph.D. Thesis, Department of Aeronautics and Astronautics, November 2004.

G. T. Huntington, "Advancement and Analysis of a Gauss Pseudo-spectral Transcription for Optimal Control Problems," Ph. D. Thesis, MIT, June 2007.

I. M. Ross and M. Karpenko, "A Review of Pseudospectral Optimal Control: From theory to flight," Annual Reviews in Control, Vol. 36, No. 2, December 2012, pp. 182-197. crossref(new window)

Q. Gong, I. M. Ross, and F. Fahroo, "Pseudospectral Optimal Control on Arbitrary Grids," AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh, PA, August 9-13, 2009.

Bryson, A. E., Jr., and Ho, Y. C., Applied Optimal Control, Hemisphere Publishing, Washington D.C., 1975.

Kirk, D. E., Optimal Control Theory; An Introduction, Dover, New York, 1970.

Garg, D., Patterson, M., Hager, W. W., Rao, A. V., Benson, D. A. and Huntington, G. T., "A Unified Framework for the Numerical Solution of Optimal Control Problems Using Pseudospectral methods," Automatica, Vol. 46, No. 11, November 2010, pp. 1843-1851. DOI:10.1016/j.automatica.2010.06.048 crossref(new window)

Vijaya Bhaskar, N. R. Babu, and K. Varghese, "Spline Based Trajectory Planning for Cooperative Crane Lifts," Proceedings of the 23rd ISARC, Tokyo, 2006, pp. 418-423

Ogundare, B. S. and Okecha, G. E., "A Pseudo Spline Methods for Solving an Initial Value Problem of Ordinary Differential Equation," Journal of Mathematics and Statistics, Vol. 4, No. 2, 2008, pp. 117-121 crossref(new window)

Akram, G. and Siddiqi, S. S., "End conditions for interpolatory septic splines," International Journal of Computer Mathematics, Vol. 82, No. 12, December 2005, pp. 1525-1540. crossref(new window)

Ross, I. M. and Fahroo, F., "Pseudo-spectral Knotting Methods for Solving Optimal Control Problems," Journal of Guidance, Control and Dynamics, Vol. 27, No. 3, May-June 2004, pp. 397-405. DOI: 10.1109/TAC.2005.860248 crossref(new window)