JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characterization of aluminized RDX for chemical propulsion
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of aluminized RDX for chemical propulsion
Yoh, Jai-ick; Kim, Yoocheon; Kim, Bohoon; Kim, Minsung; Lee, Kyung-Cheol; Park, Jungsu; Yang, Seungho; Park, Honglae;
  PDF(new window)
 Abstract
The chemical response of energetic materials is analyzed in terms of 1) the thermal decomposition under the thermal stimulus and 2) the reactive flow upon the mechanical impact, both of which give rise to an exothermic thermal runaway or an explosion. The present study aims at building a set of chemical kinetics that can precisely model both thermal and impact initiation of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum. For a thermal decomposition model, the differential scanning calorimetry (DSC) measurement is used together with the Friedman isoconversional method for defining the frequency factor and activation energy in the form of Arrhenius rate law that are extracted from the evolution of product mass fraction. As for modelling the impact response, a series of unconfined rate stick data are used to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the sample. For validation of the modeled results, a cook-off test and a pressure chamber test are used to compare the predicted chemical response of the aluminized RDX that is either thermally or mechanically loaded.
 Keywords
chemical kinetics;aluminum;energetic materials;RDX;DSC;
 Language
English
 Cited by
 References
1.
Melius, C. F., "Thermochemical Modeling: II. Application to Ignition and Combustion of Energetic Materials", Chemistry and Physics of Energetic Materials, Vol. 309, 1990, pp.51-78.

2.
Burnham, A. K., Weese, R. K., Wardell, J. F., Tran, T. D., Wemhoff, A. P., Koerner, J. G. and Maienschein, J. L., "Can thermal analysis reliably predict thermal cookoff behavior", 13th International Detonation Symposium, Norfolk, VA, USA, 2006

3.
Tarver, C. M. and Tran, T. D., "Thermal decomposition models for HMX-based plastic bonded explosives", Combustion and Flame, Vol. 137, 2004, pp.50-62. crossref(new window)

4.
Yoh, J. J., McClelland, M. A., Maienschein, J. L., Wardell, J. F. and Tarver, C. M., "Simulating thermal explosion of cyclotrimethylenetrinitramine-based explosives: Model comparison with experiment", Journal of Applied Physics, Vol. 97, 2005, 083504. crossref(new window)

5.
Yoh, J. J., McClelland, M. A., Maienschein, J. L., Nichols, A. L. and Tarver, C. M., "Simulating thermal explosion of octahydrotetranitrotetrazine-based explosives: Model comparison with experiment", Journal of Applied Physics, Vol. 100, 2006, 073515. crossref(new window)

6.
Friedman, H. L., "Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic", Journal of Polymer Science, Vol. 6, 1963, pp.183-195.

7.
Vyazovkin, S., "Modification of the Integral Isoconversional Method to Account for Variation in the Activation Energy", Journal of Computational Chemistry, Vol. 22, No. 2, 2001, pp. 178-183. crossref(new window)

8.
Roduit, B., Borgeat, C., Berger, B., Folly, P., Andres, H., Schadeli, U. and Vogelsanger, B., "Up scaling of DSC Data of High Energetic Materials Simulation of Cook Off Experiments", Journal of Thermal Analysis and calorimetry, Vol. 85, 2006, pp. 195-202. crossref(new window)

9.
Roduit, B., Folly, P., Berger, B., Mathieu, J., Sarbach, A., Andres, H., Ramin , M. and Vogelsanger, B., "Evaluating SADT by Advanced Kinetics-based Simulation Approach", Journal of Thermal Analysis and Calorimetry, Vol. 93, 2008, pp. 153-161. crossref(new window)

10.
Long, G. T., Vyazovkin, S., Brems, B. A. and Wight, C. A., "Competitive Vaporization and Decomposition of Liquid RDX", Journal of Physical Chemistry B, Vol. 104, 2000, pp. 2570-2574. crossref(new window)

11.
Lee, E. L. and Tarver, C. M. "Phenomenological model of shock initiation in heterogeneous explosives", Physics of Fluids, Vol. 23, No. 12, 1980, pp.2362-2372. crossref(new window)

12.
Souers, P. C., Anderson, S., Mercer, J., McGuire, E. and Vitello, P., "JWL++: A Simple Reactive Flow Code Package for Detonation", Propellants, Explosives, Pyrotechnics, Vol. 25, No. 2, 2000, pp.54-58. crossref(new window)

13.
Tarver, C. M., Hallquist, J. O. and Erickson, L. M., "Modeling short pulse duration shock initiation of solid explosives", Proceedings of the 8th Symposium on Detonation, 1985, pp.951-961.

14.
Guilkey, J. E., Harman, T. B. and Banerjee, B., "An Eulerian-Lagrangian Approach for Simulating Explosions of Energetic Devices", Computers and Structures, Vol. 85, 2007, pp.660-674. crossref(new window)

15.
Lee, E. L. , Hornig, H. C. and Kury, J. W., "Adiabatic Expansion of High Explosive Detonation Products", LLNL, UCRL-50422, 1968, pp.1-21.

16.
Kim, B., Park, J., Lee, K.-C. and Yoh, J. J., "A reactive flow model for heavily aluminized cyclotrimethylene-trinitramine", Journal of Applied Physics, Vol. 116, 2014, 023512. crossref(new window)

17.
Kuhl, A. L., Bell, J. B. and Beckner, V. E., "Heterogeneous continuum model of aluminum particle combustion in explosions", Combustion, Explosion, and Shock Waves, Vol. 46, No. 4, 2010, pp.433-448. crossref(new window)