JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Two-Dimensional Moving Blade Row Interactions in a Stratospheric Airship Contra-Rotating Open Propeller Configuration
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Two-Dimensional Moving Blade Row Interactions in a Stratospheric Airship Contra-Rotating Open Propeller Configuration
Tang, Zhihao; Liu, Peiqing; Guo, Hao; Yan, Jie; Li, Guangchao;
  PDF(new window)
 Abstract
The numerical simulation of two-dimensional moving blade row interactions is conducted by CFD means to investigate the interactions between the front and rear propeller in a stratospheric airship contra-rotating open propeller configuration caused by different rotational speeds. The rotational speed is a main factor to affect the propeller Reynolds number which impact the aerodynamic performance of blade rows significantly. This effect works until the Reynolds number reaches a high enough value beyond which the coefficients become independent. Additionally, the interference on the blade row has been revealed by the investigation. The front blade row moves in the induced-velocity field generated by the rear blade row and the aerodynamic coefficients are influenced when the rear blade row has fast RPMs. The rear blade row moving behind the front one is affected directly by the wake and eddies generated by the front blade row. The aerodynamic coefficients reduce when the front blade row has slow RPMs while increase when the front blade row moves faster than itself. But overall, the interference on the front blade row due to the rear blade row is slight and the interference on the rear blade row due to the front blade row is much more significant.
 Keywords
moving blade row;blade row interaction;contra-rotating open propeller;stratospheric airship;
 Language
English
 Cited by
 References
1.
Colozza, A., "Initial Feasibility Assessment of a High Altitude Long Endurance Airship", NASA/CR-2003-212724, 2003.

2.
Moomey, E. R., "Technical Feasibility of Loitering Lighter-than-Air Near-Space Maneuvering Vehicles", M.S. Dissertation, U.S. Air Force Inst. Of Technology Rept. ADA437762, Wright-Patterson AFB, OH, March 2005.

3.
Li, Y., Nahon, M. and Sharf, I., "Airship dynamics modeling: A literature review", Progress in Aerospace Sciences, Vol. 47, 2011, pp. 217-239. DOI: 10.1016/j.paerosci.2010.10.001 crossref(new window)

4.
Shen, J. Q., Pan. C., Wang, J. J., Yi, H. M. and Li, T., "Reynolds-Number Dependency of Boundary-Layer Transition Location on Stratospheric Airship Model", Journal of Aircraft, Vol. 52, No. 4, 2015, pp. 1355-1359. DOI: 10.2514/1.C032971 crossref(new window)

5.
Carichner, G. E. and Nicolai, L. M., Fundamentals of Aircraft and Airship Design (Volume 2: Airship Design and Case Studies), AIAA Education Series, AIAA, New York, 2013, pp. 151-195.

6.
Liu, P., Tang, Z., Chen, Y. and Guo, H., "Experimental Feasibility Assessment of Stratospheric Airship Counter-Rotating Propellers", AIAA 53rd Aerospace Sciences Meeting, Kissimmee, Florida, 2015, AIAA Paper 2015-1029. DOI: 10.2514/6.2015-1029 crossref(new window)

7.
Tang, Z., Liu, P., Chen, Y. and Guo, H., "Experimental Study of Contra-Rotating Propellers for High-Altitude Airships", Journal of Propulsion and Power, Vol. 31, No. 5, 2015, pp. 1491-1496. DOI: 10.2514/1.B35746 crossref(new window)

8.
Tang, Z., Liu, P., Sun, J., Chen, Y., Guo, H. and Li, G., "Performance of Contra-Rotating Propellers for Stratospheric Airship", International Journal of Aeronautical and Space Sciences, Vol. 16, No. 4, 2015.

9.
Whitmore, S. A. and Merrill, R. S., "Nonlinear Large Angle Solutions of the Blade Element Momentum Theory Propeller Equations", Journal of Aircraft, Vol. 49, No. 4, 2012, pp. 1126-1134. DOI: 10.2514/1.C031645 crossref(new window)

10.
Gray, W. H., "Wind Tunnel Test of Dual-Rotating Propellers with Systematic Differences in Number of Blades, Blade Setting and Rotational Speed of Front and Rear Propellers", NACA ARR No. L4E22 (WR L-80), 1944.

11.
Bartlett, W. A., "Wind-Tunnel Tests of a Dual-Rotating Propeller Having One Component Locked or Windmilling", NACA ARR No. L5A13a (WR L-214), 1945.

12.
Harrison, G. L. and Sullivan, J. P., "Measurement of a Counter Rotation Propeller Flowfield Using a Laser Doppler Velocimeter", AIAA 25th Aerospace Sciences Meeting, Reno, Nevada, 1987, AIAA Paper 1987-0008. DOI: 10.2514/6.1987-8 crossref(new window)

13.
Shin, H., Whitfield, C. E. and Wisler, D. C., "Rotor- Rotor Interaction for Counter-Rotating Fans, Part 1: Three- Dimensional Flowfield Measurements", AIAA Journal, Vol. 32, No. 11, 1994, pp. 2224-2233. DOI: 10.2514/3.12281 crossref(new window)

14.
Sturmer, A., Gutierrez, C. O. M., Roosenboom, E. W. M., Schroder, A., Geisler, R., Pallek, D., Agocs, J. and Neitzke, K., "Experimental and Numerical Investigation of a Contra Rotating Open-Rotor Flowfield", Journal of Aircraft, Vol. 49, No. 6, 2012, pp. 1868-1877. DOI: 10.2514/1.C031698 crossref(new window)

15.
Okulov, V. L., Sorensen, J. N. and Wood D. H., "The rotor theories by Professor Joukowsky: Vortex theories", Progress in Aerospace Sciences, Vol. 73, 2015, pp. 19-46. DOI: 10.1016/j.paerosci.2014.10.002 crossref(new window)

16.
Fontanals, A., Coussirat, M., Guardo, A. and Egusquiza, E., "Detailed study of the rotor-stator interaction phenomenon in a moving cascade of airfoils", IOP Conference Series: Earth and Environmental Science, Vol. 12, 2010. DOI: 10.1088/1755-1315/12/1/012089 crossref(new window)

17.
Arko, B. M. and McQuilling, M., "Computational Study of High-Lift Low-Pressure Turbine Cascade Aerodynamics at Low Reynolds Number", Journal of Propulsion and Power, Vol. 29, No. 2, 2013, pp. 446-459. DOI: 10.2514/1.B34576 crossref(new window)

18.
Lipfert, M., Habermann, J., Rose, M. G., Staudacher, S. and Guendogdu, Y., "Blade-Row Interactions in a Low Pressure Turbine at Design and Strong Off-Design Operation", Journal of Turbomachinery, Vol. 136, 2014. DOI: 10.1115/1.4028213 crossref(new window)

19.
Walther, B. and Nadarajah, S., "Adjoint-Based Constrained Aerodynamic Shape Optimization for Multistage Turbomachines", Journal of Propulsion and Power, Vol. 31, No. 5, 2015, pp. 1298-1319. DOI: 10.2514/1.B35433 crossref(new window)

20.
ANSYS Inc., ANSYS FLUENT 14.0, User's guide.

21.
Mieloszyk, J., Galinski, C. and Piechna, J., "Contrarotating propeller for fixed wing MAV: part 1", Aircraft Engineering and Aerospace Technology, Vol. 85, No. 4, 2013, pp. 304-315. DOI: 10.1108/AEAT-Jan-2012-0008 crossref(new window)

22.
Selig, M. S., Lyon, C. A., Giguere, P., Ninham, C. P. and Guglielmo, J. J., Summary of Low-Speed Airfoil Data (Volume 2), SoarTech Publications, Virginia Beach, Virginia, 1996.

23.
Selig, M. S. and Guglielmo, J. J., "High-Lift Low Reynolds Number Airfoil Design", Journal of Aircraft, Vol. 34, No. 1, 1997, pp. 72-79. DOI: 10.2514/2.2137 crossref(new window)

24.
Cummings, R. M., Forsythe, J. R., Morton, S. A. and Squires, K. D., "Computational Challenges in High Angle of Attack Flow Prediction", Progress in Aerospace Sciences, Vol. 39, No. 5, 2003, pp. 369-384. DOI: 10.1016/S0376-0421(03)00041-1 crossref(new window)