JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Research Progress of the Structure Vibration-Attitude Coordinated Control of Spacecraft
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Research Progress of the Structure Vibration-Attitude Coordinated Control of Spacecraft
Yang, Jingyu; Qu, Shiying; Lin, Jiahui; Liu, Zhiqi; Cui, Xuanming; Wang, Chu; Zhang, Dujiang; gu, Mingcheng; Sun, Zhongrui; Yang, Kang; Zhou, Lanwei; Chen, Guoping;
  PDF(new window)
 Abstract
This paper gives an overview of research on the field of structure vibration-attitude coordinated control of spacecraft. First of all, the importance of the technology has been given an introduction, and then later the research progress of space structure dynamics modeling, research progress of structure vibration-attitude coordinated control of flexible spacecraft have been discussed respectively. Finally, future research on application of structure vibration-attitude coordinated control of spacecraft has been recommended.
 Keywords
spacecraft;vibration-attitude coordinated control;overview;
 Language
English
 Cited by
 References
1.
S. Glasstone, Sourcebook on the Space Sciences. 1965.

2.
P. C. Hughes, Spacecraft Attitude Dynamics, Dover Publications, 1986.

3.
L. P. W, "Spacecraft Attitude Dynamics and Control-A Personal Perspective on Early Developments", J. Guid. Control. Dyn., Vol. 19, 1986, pp. 129-134.

4.
M. Balas, "Trends in large space structure control theory: fondest hopes, wildest dreams", Autom. Control. IEEE Trans., Vol. 27, No. 3, 1982, pp. 522-535. crossref(new window)

5.
H. H. Cheng Liu, Qiang Tian, and Dong Yan, "Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF", Com put. Methods Appl.Mech.Engrg., Vol. 258, 2013, pp. 81-95. crossref(new window)

6.
E. J. L. Shabana, and A A, Hussien, H. A., "Application of the absolute nodal coordinate formulation to large rotation and large deformation problems", J. Mech. Des., Vol. 120, No. 2, 1998, pp. 188-195. crossref(new window)

7.
S. A. A. and Berzeri, M., "Development of simple models for the elastic forces in the absolute nodal coordinate formulation", J. Sound Vib., Vol. 235, No. 4, 2000, pp.539-565. crossref(new window)

8.
S. A. A., Omar, M. A., "A two-dimensional shear deformable beam for large rotation and deformation problems", J. Sound Vib., Vol. 243, No. 3, 2001, pp. 565-576. crossref(new window)

9.
M. A. M., Kerkkanen K. S. and Sopanen, J. T., "A linear beam finite element based on the absolute nodal coordinate formulation", J. Mech. Des., Vol. 127, No. 4, 2005, pp. 621-630. crossref(new window)

10.
M. A. M., Dufva, K. E. and Sopanen, J. T., "Threedimensional beam element based on a cross-sectional coordinate system approach", Nonlinear Dyn., Vol. 43, No. 4, 2006, pp. 311-327. crossref(new window)

11.
M. A. M., Dufva, K. E. and Sopanen, J. T., "A twodimensional shear deformable beam element based on the absolute nodal coordinate formulation", J. Sound Vib., Vol. 280, No. 3, 2005, pp. 719-738. crossref(new window)

12.
E. J. L., Garcia-Vallejo, D. and Mikkola, A. M., "A new locking-free shear deformable finite element based on absolute nodal coordinates", Nonlinear Dyn., Vol. 50, No. 1, 2007, pp. 249-264. crossref(new window)

13.
S. Y. and Sugiyama, H., "A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates", J. Multi-body Dyn., Vol. 221, No. 2, 2007, pp. 219-231, 2007.

14.
A. A. S., Pengfei, Li, and Florentina, M. Gantoi, "Higher order representation of the beam cross section deformation in large displacement finite element analysis", J. Sound Vib., Vol. 330, 2011, pp. 6495-6508. crossref(new window)

15.
H. H., Cheng Liu, and Qiang Tian, "New spatial curved beam and cylindrical shell elements of gradient-deficient Absolute Nodal Coordinate Formulation", Nonlinear Dyn, Vol. 70, 2012, pp. 1903-1918. crossref(new window)

16.
S. A. A. and Mikkola, A. M., "A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications", Multibody Syst. Dyn., Vol. 9, No. 3, 2003, pp. 283-309. crossref(new window)

17.
P. D. Y. and Dmitrochenko, O. N., "Generalization of plate finite elements for absolute nodal coordinate formulation", Multibody Syst. Dyn., Vol. 10, No. 1, 2003, pp. 17-43. crossref(new window)

18.
Yoo, W., Lee, J. and Park, S., "Large deflection analysis of a thin plate: computer simulations and experiments", Multibody Syst. Dyn., Vol. 11, No. 2, 2004, pp. 185-208. crossref(new window)

19.
M. A. and Dmitrochenko, O., "Two simple triangular plate elements based on the absolute nodal coordinate formulation", J. Comput. Nonlinear Dyn., Vol. 3, No. 4, 2008, pp. 12-41.

20.
J. F. Grzegorz ORZECHOWSKI, "INTEGRATION OF THE EQUATIONS OF MOTION OF MULTIBODY SYSTEMS USING ABSOLUTE NODAL COORDINATE FORMULATION", Acta Mech. Autom., Vol. 6, No. 2, 2012, pp. 75-83.

21.
G. ORZECHOWSKI, "ANALYSIS OF BEAM ELEMENTS OF CIRCULAR CROSS SECTION USING THE ABSOLUTE NODAL COORDINATE FORMULATION", Arch. Mech. Eng., Vol. 12, No. 3, 2012, pp. 283-296.

22.
S. A. Hussein, B. and Negrut, D., "Implicit and Explicit Integration in the Solution of the Absolute Nodal Coordinate Differential/Algebraic Equations", Nonlinear Dyn., No. 54, 2008, pp. 283-296.

23.
H. S. Hiroki Yamashita, "Numerical convergence of finite element solutions of nonrational B-spline element and absolute nodal coordinate formulation", Nonlinear Dyn, Vol. 67, 2012, pp. 177-189. crossref(new window)

24.
Chijie, L., "Dynamic and thermal analyses of flexible structures in orbit", [PhD Dissertation].Storrs, University of Connecticut, 2006.

25.
B. Souh, "Absolute nodal coordinate plane beam formulation for multibody systems dynamics", Multibody Syst Dyn, Vol. 12, 2012, pp. 156-166.

26.
E. Garcia-Vallejo D, Mayo J, "Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation", Nonlinear Dyn., No. 35, 2004, pp. 313-329. crossref(new window)

27.
L. C. Ting Pi, Yunqing Zhang, "First order sensitivity analysis of flexible multibody systems using absolute nodal coordinate formulation", Multibody Syst Dyn, Vol. 27, 2012, pp. 153-171. crossref(new window)

28.
L. C. Yunqing Zhang, Qiang Tian, "Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods", Multibody Syst Dyn, Vol. 21, 2009, pp. 281-303. crossref(new window)

29.
S. A. Maqueda LG, "Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams", Multibody Syst. Dyn., No. 18, 2007, pp. 375-396. crossref(new window)

30.
M. LG, "Use of nonlinear constitutive models in the absolute nodal coordinate formulation", [PhD Dissertation], Chicago:University of Illinois at Chicago, 2008.

31.
S. A. Sugiyama H, "On the Use of Implicit Integration Methods and the Absolute Nodal Coordinate Formulation in the Analyssis of Elasto-Plastic Deformation Problems", Nonlinear Dyn., No. 37, 2004, pp. 245-270.

32.
G. J. Kübler L, and Eberhard, P., "Flexible Multibody Systems with Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates", Nonlinear Dyn., No. 34, 2003, pp. 31-52.

33.
J. D. Garcia-Vallejo D, and Valverde J, "An Internal Damping Model for the Absolute Nodal Coordinate Formulation", Nonlinear Dyn., No. 42, 2005, pp. 347-369.

34.
J. Gerstmayr, H. Sugiyama, and A. Mikkola, "Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems", J. Comput. Nonlinear Dyn., Vol. 8, 2013, pp. 1-12.

35.
W.-S. and Hyun-Woo Kim, "MBD applications in design", Int. J. Non. Linear. Mech., Vol. 53, 2013, pp. 55-62. crossref(new window)

36.
P. M. Laith K. Abbas, and Xiaoting Rui, "Panel flutter analysis of plate element based on the absolute nodal coordinate formulation", Multibody Syst Dyn, Vol. 27, 2012, pp. 135-152. crossref(new window)

37.
J. Y. Q. Tian, Y. Zhang, and L. Chen, "Simulation of planar flexible multibody systems with clearance and lubricated revolute joints", Nonlinear Dyn., Vol. 60, 2010, pp. 489-511. crossref(new window)

38.
C. Liu, Q. Tian, and H. Hu, "Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints", Mech. Mach. Theory, Vol. 52, 2012, pp. 106-129. crossref(new window)

39.
V. D. Majda Cohodar, and Wolfgang Borutzky, "Comparison of different formulations of 2D beam elements based on Bond Graph technique", Simul. Model. Pract. Theory, Vol. 17, 2009, pp. 107-124. crossref(new window)

40.
Q. Tian, Y. Zhang, L. Chen, and P. Flores, "Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints", Comput. Struct., Vol. 87, No. 13-14, 2009, pp. 913-929. crossref(new window)

41.
P. F. Qiang Tian, Yanlei Sun, Cheng Liu, and Haiyan Hu, "ElastoHydroDynamic lubricated cylindrical joints for rigid-flexible multibody dynamics", Comput. Struct., Vol. 114-115, 2013, pp. 106-120. crossref(new window)

42.
M. A. B. Ahmed A. Shabana, Florentina M. and Gantoi, "Integration of finite element and multibody system algorithms for the analysis of human body motion", Procedia IUTAM, Vol. 2, 2011, pp. 233-240.

43.
O. Dmitrochenko, "Finite elements using absolute nodal coordinates for large-deformation flexible multibody dynamics", J. Comput. Appl. Math., Vol. 215, 2008, pp. 368 - 377. crossref(new window)

44.
G. R. Difeng Hong, and Jiali Tang, "Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation", J. Fluids Struct., Vol. 27, 2011, pp. 1137-1148. crossref(new window)

45.
H. R. J.L. Tang, G.X. Ren, and W.D. Zhu, "Dynamics of variable-length tethers with application to tethered satellite deployment", Commun Nonlinear Sci Numer Simulat, Vol. 16, 2011, pp. 3411-3424. crossref(new window)

46.
G. Zhenxing Shen, QiangTian, and XiaoningLiu, "Thermally induced vibrations of flexible beams using Absolute Nodal Coordinate Formulation", Aerosp. Sci. Technol., Vol. 29, 2013, pp. 386-393. crossref(new window)

47.
A. M. E.-A. and Ayman A. Nada, "Absolute nodal coordinate formulation of large-deformation piezoelectric laminated plates", Nonlinear Dyn, Vol. 67, 2012, pp. 2441-2454. crossref(new window)

48.
Jingyu Yang, and Guoping Chen, "Robust Nominal Model-Based Sliding Mode Robust Control for Vibration of Flexible Rectangular Plate", Appl. Math, Vol. 7, No. 2L, 2013, pp. 671-678.

49.
S.-Q. Zhang, Y.-X. Li, and R. Schmidt, "Active shape and vibration control for piezoelectric bonded composite structures using various geometric nonlinearities", Compos. Struct., Vol. 122, 2015, pp. 239-249. crossref(new window)

50.
M. P. C. Zhang S.Q., Li H.N. and Schmidt R., "Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures", J. Sound Vib., Vol. 333, 2014, pp. 1209-1223. crossref(new window)

51.
Y. Luo, M. Xu, B. Yan, and X. Zhang, "PD control for vibration attenuation in Hoop truss structure based on a novel piezoelectric bending actuator", J. Sound Vib., Vol. 339, 2015, pp. 11-24. crossref(new window)

52.
Sh. Z. and Rongbo He, "Independent modal variable structure fuzzy active vibration control of thin plates laminated with photostrictive actuators", Chinese J. Aeronaut., Vol. 26, No. 2, 2013, pp. 350-356. crossref(new window)

53.
K. S. and Thomas Rittenschober, "Observer-based self sensing actuation of piezoelastic structures for robust vibration control", Automatica, Vol. 48, 2012, pp. 1123-1131. crossref(new window)

54.
A. Reza, M. Mailah, I. Z. Mat, and O. Tokhi, "Selflearning active vibration control of a flexible plate structure with piezoelectric actuator", Simul. Model. Pract. Theory, Vol. 18, No. 5, 2010, pp. 516-532. crossref(new window)

55.
I. Z. Mat Darus and M. O. Tokhi, "Soft computing adaptive active vibration control of flexible structures", Elsevier, 2005.

56.
C. Long-xiang, C. Guo-ping, and P. Ji, "Experimental study of delayed feedback control for a flexible plate", J. Sound Vib., Vol. 322, 2009, pp. 629-651. crossref(new window)

57.
Z. Qiu, H. Wu, and D. Zhang, "Experimental researches on sliding mode active vibration control of flexible piezoelectric cantilever plate integrated gyroscope", Thin-Walled Struct., Vol. 47, No. 8, 2009, pp. 836-846. crossref(new window)

58.
M. N. Ma, K. and Ghasemi-Nejhad, "Adaptive control of flexible active composite manipulators driven by piezoelectric patches and active struts with dead zones", Control Syst. Technol. IEEE Trans., Vol. 16, No. 5, 2008, pp. 897-907. crossref(new window)

59.
R. Kumar, S. P. Singh, and H. N. Chandrawat, "MIMO adaptive vibration control of smart structures with quickly varying parameters: Neural networks vs classical control approach", J. Sound Vib., Vol. 307, 2007, pp. 639-661. crossref(new window)

60.
L. W. Z. Lin J, "Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam", J. Sound Vib., Vol. 296, 2006, pp. 567-582. crossref(new window)

61.
J. Qiu, Z. and Ye, C. and Wei, "Experimental Study on Sliding Mode Variable Structure Vibration Control for Piezoelectric Cantilever Plate", in Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on, 2008, pp. 1864-1868.

62.
L. Sun and W. Huo, "Robust adaptive relative position tracking and attitude synchronization for spacecraft rendezvous", Aerosp. Sci. Technol., Vol. 41, 2015, pp. 28-35. crossref(new window)

63.
Z. C. Binglong Cong, and Xiangdong Liu, "Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers", Aerosp. Sci. Technol., Vol. 30, 2013, pp. 1-7. crossref(new window)

64.
S. N. S. Keum, and W. Lee, "L1 adaptive control of flexible spacecraft despite disturbances", Acta Astronaut. J., Vol. 80, 2012, pp. 24-35. crossref(new window)

65.
B. Wu, D. Wang, and E. K. Poh, "Decentralized slidingmode control for spacecraft attitude synchronization under actuator failures", Acta Astronaut., Vol. 105, No. 1, 2014, pp. 333-343. crossref(new window)

66.
X. S. TIAN Lin, "Attitude Control Considering Variable Input Saturation Limit for a Spacecraft Equipped with Flywheels", Chinese J. Aeronaut., Vol. 25, 2012, pp. 437-445. crossref(new window)

67.
E. J. Findlay, A. de Ruite, J. R. Forbes, and J. Lee, "Magnetic Attitude Control of a Flexible Satellite", J. Guid. Dyn., Vol. 36, No. 5, 2013, pp. 1522-1526. crossref(new window)

68.
M. N. A., Hanspete. S. Butcher, "Spacecraft Attitude Stabilization Using Nonlinear Delayed Multiactuator Control and Inverse Dynamics", J. Guid. Dyn., Vol. 36, No. 5, 2013, pp. 1440-1452. crossref(new window)

69.
G. M. Chuanjiang Li, Kok Lay Teo, Bin Li, "A constrained optimal PID-like controller design for spacecraft attitude stabilization", Acta Astronaut. J., Vol. 74, 2012, pp. 131-140. crossref(new window)

70.
Y. C. Yajie Ma, Bin Jiang Gang Tao, "Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedbackv", J. Franklin Inst., Vol. 351, 2014, pp. 296-314. crossref(new window)

71.
Santanu Das, Manoranjan Sinha, Arun K. Misra, "Dynamic Neural Units for Adaptive Magnetic Attitude Control of Spacecraft", J. Guid. Dyn., Vol. 35, No. 4, 2012, pp. 1280-1291. crossref(new window)

72.
Z. C. Binglong Cong, Xiangdong Liu, "Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers", Aerosp. Sci. Technol., Vol. 30, 2013, pp. 1-7. crossref(new window)

73.
Y. Z. Qinglei Hu, Bo Li, "Robust attitude control design for spacecraft under assigned velocity and control constraints", ISA Trans., Vol. 52, 2013, pp. 480-493. crossref(new window)

74.
S.-Y. P. Mohammad Abdelrahman, "Spacecraft attitude control via a combined state-dependent Riccati equation and adaptive neuro-fuzzy approach", Aerosp. Sci. Technol., Vol. 26, 2013, pp. 16-28. crossref(new window)

75.
Y. X. Kunfeng Lu, "Adaptive attitude tracking control for rigid spacecraft with finite-time convergence", Automatica, Vol. 49, 2013, pp. 3591-3599. crossref(new window)

76.
M. G. and E. Bijami, "An efficient decentralized robust adaptive controller for a class of large-scale non-affine nonlinear systems with strong interactions", Neural Comput Applic, Vol. 24, 2014, pp. 463-471. crossref(new window)

77.
Y.-S. H. H.-L. and Y.-X. Zhu, "Decentralized adaptive fuzzy control of large-scale nonaffine nonlinear systems by state and output feedback", Nonlinear Dyn, Vol. 69, 2012, pp. 1665-1677. crossref(new window)

78.
X. Zhang and Y. Lin, "Adaptive output feedback control for a class of large-scale nonlinear time-delay systems", Automatica, Vol. 52, 2015, pp. 87-94. crossref(new window)

79.
B.-C. Y. and Guang-Hong Zheng, "Decentralized sliding mode quantized feedback control for a class of uncertain large-scale systems with dead-zone input", Nonlinear Dyn, Vol. 71, 2013, pp. 417-427. crossref(new window)

80.
D. J. H. Tengfei Liu, and Zhong-Ping Jiang, "Decentralized output-feedback control of large-scale nonlinear systems with sensor noise", Automatica, 2012, pp. 2560-2568.

81.
X. J. Shaocheng Tong, and Yongming Li, "Adaptive fuzzy decentralized dynamics surface control for nonlinear large-scale systems based on high-gain observer", Inf. Sci. (Ny)., Vol. 235, 2013, pp. 287-307. crossref(new window)