Advanced SearchSearch Tips
A Review of the Fabrication of Soft Structures with Three-dimensional Printing Technology
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Review of the Fabrication of Soft Structures with Three-dimensional Printing Technology
Jang, Jinah; Cho, Dong-Woo;
  PDF(new window)
3D printing technology is a promising technique for fabricating complex 3D architectures based on the CAD/CAM system, and it has been extensively investigated to manufacture structures in the fields of mechanical engineering, space technology, automobiles, and biomedical and electrical applications. Recent advances in the 3D printing of soft structures have received attention for the application of the construction of flexible sensors of soft robotics or the recreation of tissue/organ-specific microenvironments. In this review paper, we would like to focus on delivering state-of-the-art fabrication of soft structures with 3D printing technology and its various applications.
3D Printing;Soft Structure;Flexible Device;3D Cell Printing;
 Cited by
융합 소방용 안전모 개발을 위한 중요도-만족도 연관 분석,오미옥;신종국;강명창;신보성;문민경;

한국기계가공학회지, 2016. vol.15. 6, pp.109-114 crossref(new window)
위치추적기를 내장한 산악용 신발 디자인 및 3D 다공성 폴리머 프린팅을 이용한 중창 제작에 관한 연구,표정희;유찬주;송영민;이태구;신보성;

한국기계가공학회지, 2016. vol.15. 6, pp.83-88 crossref(new window)
Choi, J. W. and Kim, H. C., "3D Printing Technologies - A Review," J. Korean Soc. Manuf. Process Eng., Vol. 14, No. 3, pp. 1-8, 2015.

Kim, J. Y., Park, J. K., Hahn, S. K. Kwon, T. H. and Cho, D. W., "Development of the Flow Behavior Model for 3D Scaffold Fabrication in the Polymer Deposition Process by a Heating Method," J. Micromech. Microeng., Vol. 19, No. 10, 105003, 2009. crossref(new window)

Choi, J. S., Kang, H.-Y., Lee, I. H., Ko, T. J. and Cho, D. W., "Development of Micro-stereolithography Technology using a UV Lamp and Optical Fiber," Int. J. Adv. Manuf. Technol., Vol. 41, No. 3-4, pp. 281-286, 2009. crossref(new window)

Jin, S. H., Lee, J. K., Lee, S. and Lee, K. C., "Output Characteristic of a Flexible Tactile Sensor Manufactured by 3D Printing Technique," J. Korean Soc. Precis. Eng., Vol. 31, No. 2, pp. 149-156, 2014. crossref(new window)

Muth, J. T., Vogt, D. M., Truby, R. L. Menguc, Y. Kolesky, D. B., Wood, R. J. and Lewis, J. A, "Embedded 3D printing of Strain Sensors within Highly Stretchable Elastomers," Adv. Mater., Vol. 26, No. 36, pp. 6307-6312, 2014. crossref(new window)

Kesner, S. B. and Howe, R. D., "Design Principles for Rapid Prototyping Forces Sensors using 3-D Printing," IEEE-ASME Trans. Mechatron., Vol. 16, No. 5, pp. 866-870, 2011. crossref(new window)

Park, J. H., Jang, J. and Cho, D. W, "Threedimensional (3D) Printed 3D Structure for Tissue Engineering," Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 10, pp. 817-829, 2014.

Murphy, S. V. and Atala, A., "3D Bioprinting of Tissues and Organs," Nat. Biotechnol., Vol. 32, No. 8, pp. 773-785, 2014. crossref(new window)

Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E. P. "High-resolution Inkjet Printing of All-polymer Transistor Circuits," Science, Vol. 290, No. 5499, pp. 2123-2126, 2000. crossref(new window)

Xu, T., Jin, J., Gregory, C., Hickman, J. J. and Boland, T., "Inkjet Printing of Viable Mammalian Cells," Biomater., Vol. 26, No. 1, pp. 93-99, 2005. crossref(new window)

Kang, H. W., Park, J. H. and Cho, D. W., "A Pixel based Solidification Model for Projection based Stereolithography Technology," Sens. Actuator A-Phys., Vol. 178, pp. 223-229, 2012. crossref(new window)

Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S. J. and Lewis, J. A., "3D Printing of Interdigitated Li-Ion Microbattery Architectures," Adv. Mater., Vol. 25, No. 33, pp. 4539-4543, 2013. crossref(new window)

Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D. and Magdassi, S., "3D Printing of Shape Memory Polymers for Flexible Electronic Devices," Adv. Mater., 2015.

Seol, Y. J., Kang, T. Y., and Cho, D. W.. "Solid Freeform Fabrication Technology applied to Tissue Engineering with Various Biomaterials," Soft Matter, Vol. 8, No. 6, pp. 1730-1735, 2012. crossref(new window)

Ferris, C. J., Gilmore, K. J., Beirne, S., McCallum, D. and Wallace, G. G., "Bio-ink for On-demand Printing of Living Cells," Biomater. Sci., Vol. 1, No. 2, pp. 224-230, 2013. crossref(new window)

Benam, K. H., Dauth, S., Hassell, B., Herland, A., Jain, A., Jang, K. J. and Ingber, D. E., "Engineered In Vitro Disease Models," Annual Review of Pathology: Mechanisms of Disease, Vol. 10, pp. 195-262, 2015. crossref(new window)

Malda, J., Visser, J., Melchels, F. P., Jüngst, T., Hennink, W. E., Dhert, W. J., Groll, J. and Hutmacher, D. W., "25th anniversary article: Engineering Hydrogels for Biofabrication," Adv. Mater., Vol. 25, No. 36, pp. 5011-5028, 2-13. crossref(new window)

Khalil, S. and Sun, W., "Bioprinting Endothelial Cells with Alginate for 3D Tissue Constructs," J. Biomech. Eng., Vol. 131, No. 11, pp. 111002, 2009. crossref(new window)

Kolesky, D. B., Truby, R. L., Gladman, A., Busbee, T. A., Homan, K. A. and Lewis, J. A., "3D Bioprinting of Vascularized, Heterogeneous Cell-laden Tissue Constructs," Adv. Mater., Vol. 26, No. 19, pp. 3124-3130, 2014. crossref(new window)

Schuurman, W., Levett, P. A., Pot, M. W., van Weeren, P. R., Dhert, W. J., Hutmacher, D. W., Melchels, F. P. W., Klein, T. J., Malda, J., "Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-Engineered Cartilage Constructs," Macromolecular Biosci., Vol. 13, No. 5, pp. 551-561, 2013. crossref(new window)

Duan, B., Hockaday, L. A., Kang, K. H. and Butcher, J. T., "3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/gelatin Hydrogels," J. Biomedical Mater. Research Part A, Vol. 101, No. 5, pp. 1255-1264, 2013.

Pati, F., Jang, J., Ha, D.-H., Kim, S. W., Rhie, J.-W., Shim, J.-H., Kim, D.-H. and Cho, D.-W., "Printing Three-dimensional Tissue Analogues with Decellularized Extracellular Matrix Bioink," Nat. Commun., Vol. 5, 2014.

Jeon, H. A., Lee, S. W. and Kwon, O. H., "Fabrication of Poly($\gamma$-glutamic acid) Porous Scaffold for Tissue Engineering Applications," J. Korean Soc. Manuf. Process Eng., Vol. 13, No. 3, pp. 35-41, 2014.

Jeong, H. J., Jee, M.-H., Kim, S.-Y. and Lee, S.-J., "Measurement of the Compressive Force on the Knee Joint Model fabricated by 3D Printing," J. Korean Soc. Manuf. Process Eng., Vol. 13, No. 2, pp. 1-7, 2014.