JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Photocatalytic Degradation of Fungicide Chlorothalonil by Mesoporous Titanium Oxo-Phosphate
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Photocatalytic Degradation of Fungicide Chlorothalonil by Mesoporous Titanium Oxo-Phosphate
Choi, Choong-Lyeal; Kim, Byung-Ha; Lee, Byung-Mook; Choi, Jyung; Rhee, In-Koo; Kim, Jang-Eok;
  PDF(new window)
 Abstract
Titanium mesoporous materials have received increasing attention as a new photocatalyst in the field for photocatalytic degradation of organic compounds. The photocatalytic degradation of chlorothalonil by mesoporous titanium oxo-phoswhate (Ti-MCM) was investigated in aqueous suspension for comparison with , (Degussa, P25) using as an effective photocatalyst of organic pollutants. Mesoporous form of titanium Phosphate has been prepared by reaction of sulfuric acid and titanium isopropoxide in the presence or n-hexadecyltrimethylammonium bromide. The XRD patterns of Ti-MCM are hexagonal phases with d-spacings of 4.1 nm. Its adsorption isotherm for chlorothalonil reached at reaction equilibrium within 60 min under dark condition with 28% degradation efficiency. The degradation ratio of chlorothalonil after 9 hours under the UV radiation condition (254 nm) exhibited 100% by Ti-MCM and 88% by . However, these degradation kinetics in static state showed a slow tendency compared to that of stirred state because of a low contact between titanium matrices and chlorothalonil. Also, degradation efficiency of chlorothalonil was increased with decreasing initial concentration and with increasing pH of solution. As results of this study, it was clear that mesoporous titanium oxo-phosphate with high surface area and crystallinity could be used to photo- catalytic degradation of various organic pollutants.
 Keywords
mesoporous titanium oxo-phosphate;photocatalytic depadation;chlorothalonil;organic pollutants;
 Language
Korean
 Cited by
 References
1.
Podkoscielny, P., Dabrowski, A. and Marijuk, O. V. (2003) Heterogeneity of active carbon in adsorption of phenol aqueous solutions, Appl. Surf. Sci. 205, 297-303 crossref(new window)

2.
Camel, V. and Bermond, A. (1998) The use of ozone and associdated oxidation processes in drinking water treatment, Wat. Res. 32, 3208-3222 crossref(new window)

3.
Hu, J. Y., Aizawa, T., Okubo, Y, Morita, T. and Mtgara, Y (1998) Adsorptive characteristics of ionogenic aromatic pesticides in water on powdered activated carbon, Wat. Res. 32, 2593-2600 crossref(new window)

4.
Graham, N. Chu, W. and Lau, C. (2003) Observations of 2,4,6-trichlorophenol degradation by ozone, Chemosphere, 51(4), 237-243 crossref(new window)

5.
Gonzalez-Pradas, E., Villafranca-Sanchez, M., Del ReyBueno, F., Urena-Amate, M. and Fernandez-Perez, M. (2000) Removal of paraquat and atrazine from water by montmorillonite-(Ce or Zr) phosphate cross-linked compounds, Pest Manag. Sci. 56, 565-570 crossref(new window)

6.
Ryu, S. P. and Oh, Y. K. (2000) The study for photodegradation of diazinon using $TiO_2$ photocatalyst, J. Kor. Environ. Sci. Soc. 9, 151-158

7.
Menssa, P. E., Mak, M. K. S. and longford, C. H. (1988) A study of the photodecomposition of different polychlorinated biphenyls by surface modified titanium(IV) oxide particles, Environ. Tech. Letters, 9, 825-832 crossref(new window)

8.
Lackhoff, M. and Niessner, R. (2002) Photocatalytic atrazine degradation by synthetic minerals, atmospheric, aerosols, and soil particle, Environ. Sci. Technol. 36, 5342-5347 crossref(new window)

9.
Antonaraki, S., Androulaki, E., Dimotikali, D. Hiskia, A. and Papaconstantinou, E. (2002) Photolytic degradation of all chlorophenols with polyoxometallates and $TiO22_2$, J. Photochem. Photobiol, A:Chem. 148, 191-197 crossref(new window)

10.
Park, J. W., Lee, S. E., Rhee, I. K. and Kim, J. E. (2002) Transformation of the fungicide chlorothalonil by fenton reagent, J. Agric. Food Chem 50, 7570-7575 crossref(new window)

11.
Fukahori, S., Ichihura, H., Kitaoka, T. and Tanaka, H. (2003) Photocatalytic decomposition of bisphenol A in water using composite $TiO_2$-zeolite sheets prepared by a papermaking technique, Environ, Sci, Technol. 37, 1048-1051 crossref(new window)

12.
Ormad, P., Cortes, S., Puig, A. and Ovelleiro, J. L. (1997) Degradation of organochloride compounds $O_3$ and $O_3/TiO22_2,$ Wat. Res. 31, 2387-2391 crossref(new window)

13.
Pramauro, E., Vincenti, M., Augugharo, V. and Palmsano, L. (1993) Photocatalytic degradation of monuron in aqueous $TiO_2$ dispersions, Environ. Sci. Technol. 27, 1790-1795 crossref(new window)

14.
Podkoscielny, P., Dabrowski, A. and Marijuk, O. V. (2003) Heterogeneity of active carbon in adsorption of phenol aqueous solutions, Appl. Surf. Sci., 205, 297-303 crossref(new window)

15.
Graham, N. Chu, W. and lau, C. (2003) Observations of 2,4,6-trichlorophenol degradation by ozone, Chemosphere, 51(4), 237-243 crossref(new window)

16.
Turch, C. S. and Ollis, D. F. (1990) Photocatalytic degradation of organic water contaminates: Mechanisms involving hydroxy radical attack, J. Catalysis, 122, 178-185 crossref(new window)

17.
Chen, D. and Ray, A. K. (1998) Photodegradation kinetics of 4-nitrophenol in $TiO_2$ suspension, Wat. Res. 32, 3223-3234 crossref(new window)

18.
Blanchard, J., $Sch\ddot{u}th$, F., Trens, P. and Hudson, M. (2000) Synthesis of hexagonally packed porous titanium oxo-phosphate, Mcropor. and Mesapor. Mater. 39, 163-170 crossref(new window)

19.
Jones, D. J., Aptel, G., Brandhorst, M., Jacquin, M., Jimenez, J. J., Lopez, A. J., Torres, P. M., Piwonski, I., Castellon, E. R., Zajac, J. and Roziere, J. (2000) High surface area mesoporous titanium phosphate: synthesis and surface acidity determination, J. Mater. Chem. 10, 1957-1963 crossref(new window)

20.
Kim, J. H., Nam, C. D. and Kim, B. K. (1996) Photocatalytic degeneration of chlorothalonil using TiO_2 supported in matrices, J. Korean Ind. & Eng. Chem. 7, 750-756

21.
Peterson, D., Watson, D. and Winterlin, W. (1990) Destruction of pesticides and their formations on water using short wavelength UV light, Bull Environ. Contamin. Toxicol. 44, 744-750 crossref(new window)

22.
Kim, H. J., Oh, Y. K. and Ryu, S. P. (2002) A study on the removal of LAS using $TiO_2$ photocatalyst, J. Kor. Environ. Sci. Soc. 11, 757-763

23.
Bahnemann, D., Bockelmann, D. and Goslich, R. (1991) Mechanistic studies of water dexoxifiction in illuminated $TiO_2$ suspensions, Solar Energy Mater. 24, 564-583 crossref(new window)