Advanced SearchSearch Tips
Partial Reduction of Dinitroaniline Herbicide Pendimethalin by Bacillus sp. MS202
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Partial Reduction of Dinitroaniline Herbicide Pendimethalin by Bacillus sp. MS202
Lee, Young-Keun; Chang, Hwa-Hyoung; Jang, Yu-Sin; Hyung, Seok-Won; Chung, Hye-Young;
  PDF(new window)
The persistence of pendimethalin in soil and ground water has an injurious effect on ecosystem. Pendimethalin-degrading bacterium was isolated from Masan, Gyeongnam province and temporarily identified as Bacillus sp. MS202 by the analysis of API CHB50, kit, FAME, and 16S rDNA sequence. from the analysis of pnedimethalin metabolite using TLC, GC, and GC-MS, we found that the degradation of pendimethalin by Bacillus sp. MS202 did not result in the dealkylated form, but the formation of the reduced compound, 6-amino-2-nitro-N(1-ethylpropyl)-3,4-xylidine or 2- amino-6-nitro-N(1-ethylpropyl)-3,4-xylidine.
Pendimethalin;Bacillus;reduction;mass spectrometry;
 Cited by
Enhancement of Pendimethalin Degradation Activity in Bacillus sp. MS202 using Gamma Radiation,Lee Young-Keun;Chang Hwa-Hyoung;Lee Ho-Jin;Park Heesoon;Lee Kyung Hee;Joe Min-Ho;

환경생물, 2005. vol.23. 4, pp.405-408
Tomlin, C. D. S. (2003) The pesticide Manual, 13th (ed), Bntish Crop Protection Council, Bracknell, UK, p.752-753

Walker, A. and Bond, W. (1977) Persistence of the herbicide AC 92,553, N-(1-ethypropy1)-2,6-dinitro-3,4-xylidine in soils, Pestic. Sci. 8, 359-369 crossref(new window)

Garcia-Valcarcel, A. I. and Tadeo, J. L. (2003) Influence of organic fertilizer application on pendirnethalm volatilization and persistence in soil, J. Agric. Food Chem. 51, 999-1004 crossref(new window)

Parochetti, J. V. and Dec, G. W. J. (1978) Photo-degradation of eleven dinitroaniline herbiddes, Weed Sci. 26, 153-156

Kiinmo, A. M, Arto, J. S. and Jussi, V. K. K (2003) Bioaccuinulation and toxicity of sediment associated herbicides (ioxynil, pendimethalm, and bentazone) in Lumbricutus variegatus (Oligcchaeta) and Chirwtomus riparius (Insecta), Ecotoxicol. Environm. Safety, 56, 398-410 crossref(new window)

US EPA (1999) Persistent bioaccumulative toxic (PBT) chemicals, Final Rule, Fed. Regist, 64, 58666-58753

lesce, M. R, Graziano, M. L., Germola, F., Montella, S., di, Gioia, L., and Stasio, C. (2003) Effects of sensitizers on the photodegradadon of the systemic fungicide tnadimenol, Chemosphere, 51, 163-166 crossref(new window)

Polonca, T. and Iztok, A. (2003) degradation of org-anophosphorus compounds by X-ray irradiation, Radiat. Phys. Oiem, 67, 527-530 crossref(new window)

Chen, W. and Mulchandard, A (1998) The use of live bio-catalysts for pesticide detoxification, Trends biotechnol. 16, 71-76 crossref(new window)

Engelhardt, G, Wallnofer, P. R., and Flapp, R (1973) Purification and properties of an aryl acylairddase of BaciItus sphaericus, catalyzing the hydrolysis of various phenylamide herbicides and fungicides, Appl. Microbiol. 26, 709-710

Bachofer, R. and Lingens, M. (1983) Degradation of carboxanilide fungicide by a Nocardia species, Phusiol. Chem. 364, 21-29 crossref(new window)

Blake, J. and Kaufman, D. D. (1975) Characterization of acylamide-hydrolyzing enzymes from Fusarium oxysporum Schlecht, Pestic. Biochem. Physiot. 5, 305-313 crossref(new window)

Lee, S. J., Katayama, A., and Kimura, M. (1995) Microbial degradation of paraquat sorbed to plant residues, J. Avric. Food Chem. 19, 291-293

Alexander, M (1980) Biodegradation of chemicals of envrronmental concern, Science, 211, 132-138 crossref(new window)

Parr, J. F. and Snith, S. (1976) Degradation of toxaphene in selected anaerobic soil environment, Soil Sci. 121, 52-57 crossref(new window)

Singh, S. B. and Kulshrestha, G. (1991) Microbial degradation of pendimethalin, J. Environ. Sci. Heidth, B26, 309-321

Parr, J. F. and Smith, S. (1973) Degradation of trifluralin under laboratory conditions and soil anaerohiosis, Soil Sci. 115, 55-63 crossref(new window)

Raphi, T. M, Deborah, L. A., and Lawrencew, P. W. (1995) Isolation and characterization of a Pseudomonas sp. that mineralizes the s-Triazine herbicede Atrazme, Appl. Environ. Microb., 61, 1451-1457

Julian, R. M, Takuichi, S., Andrew J. W., Tracey, A. M, John C. F., Sarah, J. K, and William, G. W. (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacteria 16S rRNA, Appl. Environ. Mcrob., 64, 795-799

Franco, C D., Beccari, E., Santini, T., Hsaneschi, G., and Tecce, G. (2002) Colony shape as a genetic trait in the pattem-forming Bacillus mycoides, BMC Microbiol. 2, 1471-2180

Gita, K., Shashi, B. S., Shashi, P. L, and Nanjapur, T. Y. (2000) Effect of long-term application of pendi-methalin: enhanced degradation in soil, Pest Manag. Sci. 56, 202-206 crossref(new window)

Joseph, S. (2003) Recent advances in the thin-layer chrornatography of pesticides: a review, J. AOAC Int. 86, 602-611

Kulshrestha, G. and Singh, S. B. (1992) Influence of soil moisture and microbial activity on pendimethalin degradation, Bull. Enuiron. Contam. Toxicol. 48, 269-274

Kole, R. K., Saha, J., Pal, S. Chaudhuri, S., and Chowdhury, A. (1994) Bacterial degradation of the herbicide pendimethalin and activity evaluation of its metabolites, Bull. Enoiron. Contam. Toxicol. 52, 779-786