JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Degradation of Chlorothalonil by Zerovalent Iron-Montmorillonite Complex
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Degradation of Chlorothalonil by Zerovalent Iron-Montmorillonite Complex
Choi, Choong-Lyeal; Park, Man; Lee, Dong-Hoon; Rhee, In-Koo; Song, Kyung-Sik; Kang, Sang-Jae; Kim, Jang-Eok;
  PDF(new window)
 Abstract
Zerovalent iron (ZVI) has been recently used for environmental remediation of soils and groundwaters contaminated by chlorinated organic compounds. As a new approach to improve its reductive activity and stability, zerovalent iron-montmorillonites (ZVI-Mt) complex are synthesized by simple process. Therefore, this study was carried out to elucidate the characteristics of ZVI-Mt complex and to investigate degradation effects of fungicide chlorothalonil. The XRD patterns of ZVI-Mt complex showed distinctive peaks of ZVI and montmorillonite. In ZVI-Mt complex, the oval particles of ZVI were partly surrounded by montmorillonite layers that could prevent ZVI surface oxidation by air. The degradation ratio of chlorothalonil after 60 min exhibited 71% by ZVI and 100% by ZVI-Mt complex. ZVI-Mt21 complex exhibited much higher and faster degradation ratio of chlorothalonil compare to that of ZVI or ZVI-Mt11 complex. Also, degradation rate of chlorothalonil was increased with increasing ZVI or ZVI-Mt complex content and with decreasing initial solution pH.
 Keywords
Zerovalent iron;montmorillonite;chlorothalonil;oxidation;remediation;
 Language
Korean
 Cited by
1.
기능화된 Zerovalent Iron에 의한 유기인계 살충제 Chlorpyrifos의 분해 특성,김대현;최충렬;김태화;박만;김장억;

Applied Biological Chemistry, 2007. vol.50. 4, pp.321-326
 References
1.
Joo, S. H., Feitz, A. J. and Waite, D. (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron, Environ. Sci. Tech. 38, 2242-2247 crossref(new window)

2.
Alowitz, M. J. and Scherer, M. M. (2002) Kinetics of nitrate, nitrite and Cr(VI) reduction by iron metal. Environ. Sci. Technol. 36, 299-306 crossref(new window)

3.
Agrawal, A. and Reatnyek, P. G. (1996) Reduction of nitro aromatic compounds by zerovalent iron metal. Environ. Sci. Technol. 30, 153-160 crossref(new window)

4.
Shea, P. J., Machacek, T. A., Comfort S. D. (2004) Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution, 132, 183-188 crossref(new window)

5.
Zhang, W. X. (2003) Nano scale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323-332 crossref(new window)

6.
Lein, H. L. and Jhang, W. (1999) Transformation of chlorinated methanes by nanoscale iron particle. J. Environ. Eng. 125, 1042-1047 crossref(new window)

7.
Matheson, L. J. and Tratnyek, P. G. (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Tech. 28, 2045-2053 crossref(new window)

8.
Agrawal, A., Ferguson, W. J., Gardner, B. O., Christ, J. A., Bandstra, J. Z. and Trantnyek, P. G. (2002) Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-valent iron. Environ. Sci. Tech. 36, 4326-4333 crossref(new window)

9.
Kober, R., Schlicker, O., Ebert, M. and Dahmke, A. (2002) Degradation of chlorinated ethylenes by $Fe^{0}$: inhibition processes and mineral precipitation. Environ. Geol. 41, 644-652 crossref(new window)

10.
Ghauch, A. (2001) Degradation of benomyl, picloram and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere, 43, 1109-1117 crossref(new window)

11.
Wang, C. B. and Zhang, W. X. (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Tech. 31, 2154-2156 crossref(new window)

12.
Yang, G. C. C. and Lee, H. L. (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res. 39, 884-894 crossref(new window)

13.
Joo, S. H., Feitz, A. J., Sedlak, D. L. and Waite, T. D. (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ. Sci. Tech. 39, 1263-1268 crossref(new window)

14.
Dror, I., Baram, D. and Berkowitz, B. (2005) Use of nanosized catalysts transformation of chloro-organic pollutants, Environ. Sci. Tech. 39, 1283-1290 crossref(new window)

15.
Kanel, S. R., Manning, B., Charlet L. and Lee, H. (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Tech. 39, 1291-1298 crossref(new window)

16.
Kim, D. H. (2005) Enhanced degradation of the organophosphorus insecticide chlorpyrifos by synthesized zerovalent iron. M. S. Thesis, Kyungpook National University

17.
Park, M., Kim, C. Y., Lee, D. H., Choi, C. L., Choi, J., Lee, S. R. and Choi, J. H. (2004) Intercalation of magnesium-urea complex into swelling clay. J. Physics & Chem. Solid, 65, 409-412 crossref(new window)

18.
He, C., Makovicky, E. and Osback, B. (1996) Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite. Applied Clay Sci. 10, 351-368 crossref(new window)

19.
Yao, Y. D., Chen, Y. Y., Lee, S. F., Chang, W. C. and Hu, H. L. (2002) Magnetic and thermal studies of nano-size Co and Fe particles. J. Magn. Magn. Mater. 239, 249-251 crossref(new window)