Advanced SearchSearch Tips
Effect of Phospho-gypsum on reduction of methane emission from rice paddy soil
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Phospho-gypsum on reduction of methane emission from rice paddy soil
Ali, Muhammad Aslam; Lee, Chang-Hoon; Kim, Pil-Joo;
  PDF(new window)
Phospho-gypsum a primary waste by-product in phosphate fertilizer manufacturing industry and a potential source of electron acceptors, such as mainly of sulfate and a trace amount of iron and manganese oxides, was selected as soil amendment for reducing methane emissions during rice cultivation. The selected amendment was added into potted soils at the rate of 0, 2, 10, and 20 Mg before rice transplanting. flux from the potted soil with rice plant was measured along with soil Eh and floodwater pH during the rice cultivation period. emission rates measured by closed chamber method decreased with increasing levels of phospho-gypsum application, but rice yield markedly increased up to 10 Mg of the amendment. At this amendment level, total emissions were reduced by 24% along with 15% rice grain yield increment over the control. The decrease in total emission may be attributed due to shifting of electron flow from methanogenesis to sulfate reduction under anaerobic soil conditions.
emission;electron acceptor;phospho-gypsum;rice;
 Cited by
Effect of By-Product Gypsum Fertilizer on Methane Gas Emissions and Rice Productivity in Paddy Field,;;;;;;;;;;

한국토양비료학회지, 2016. vol.49. 1, pp.30-35 crossref(new window)
Effect of By-Product Gypsum Fertilizer on Methane Gas Emissions and Rice Productivity in Paddy Field, Korean Journal of Soil Science and Fertilizer, 2016, 49, 1, 30  crossref(new windwow)
Abrol, I.P., Bhumbla, D.R, Meelu, O.P., 1985. Influence of salinity and alkalinity on properties and management of rice lands. In: Soil Physics and rice, Int. Rice Res. Inst., Los Banos, Philippines, pp. 183-198

Achtnich, C., Bak, F and Conrad, R. 1995, Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers and methanogens in anoxic paddy soil, Biol. Fertil. Soils 19, 65-72 crossref(new window)

Adhya, T.K., Rath, A.K., Gupta, P.K., Rao, VR, Das SN, Parida KM, Parashar D.C., Sethunathan, S., 1994. Methane emission from flooded rice fields under irrigated conditions, Biol, Fertil. Soils, 18: 245-248 crossref(new window)

Arman, A., Seals, R.K, 1990. A preliminary assessment of utilization alternatives for phosphogypsum, In: Chang, W.E., (Ed.), Proceeding of the 3rd International Symposium on Phosphogypsum, Florida Institute of Phosphate Research, Bartow, FL, pp. 562-583

Alba, A.K. and Sumner, M.E., 1990. Amelioration of acid soil infertility by phosphogypsum, Plant and soil, 128: 127-134 crossref(new window)

Allison L.E, 1965, Organic carbon, In: Black CA, Evans DO, White JL, Ensminger LE, Clark FE (Eds.) Methods of soil analysis, part 2, American Soc. of Agron. Madison, WI, USA, pp.1367-1376

Anastasi, C., Dowding, M., Simpson, V.J.1992. Future $CH_{4}$ emissions from rice production, Journal of Geophysical Res. 97, 7521-7525 crossref(new window)

Anonymous 1990, SAS/STAT User's guide, vol.1, ACECLUS-FREQ version 6, 4th edition, SAS Institute, Inc.Cary, NC. Achtnich, C., Bak, F and Conrad, R. 1995, Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers and methanogens in anoxic paddy soil, Biol. Fertil. Soils 19, 65-72 crossref(new window)

Aulakh, MS, Bodenbender J, Wassmann R and Rennenberg H (2000). Methane transport capacity of rice plants, I.Influence of methane concentration and growth stage analuzed with an automated measuring system, Nutr. Cycling Agroecosyst. 58: 367-365 crossref(new window)

Bartlett, K.B., Harris, R.C. and Sebacher, D.I., 1985. Methane flux from coastal salt marshes, J. Geo. Phy. Res., 90: 5710-5720 crossref(new window)

Bartlett, K.B., Bartlett, D.S., Harris, R.C. and Sebacher, D.I., 1987. Methane emissions along a salt marsh salinity gradient, Biogeochemistry, 4: 183-202 crossref(new window)

Beaton, J.D., Fox, R.L., Jones, M.B., 1985. Production, marketing and use of sulfur products, In: England, O.P. (Ed.), Fertilizer technology and use, Soil Sci. Soc.Am., Madison, W1, pp. 411-453

Brady, N.C., Weil, R.R., 1990. The Nature and Properties of soils, Prentice-Hall, NJ, p.740

Capone, D.G. and Kiene, R.P. 1988. Comparison of microbial dynamics in marine and fresh water sediments: contrasts in anaerobic carbon catabolism, Limnology and Oceanography, 33, 725-749 crossref(new window)

Carbonell, A.A., Porthose, J.D., Mulbah, C.K., Delaune, R.D., Patrick, W.H. (1999). Metal solubility in phosphogypsum-amended sediment under controlled pH and redox conditions, J.Environ. Quality, 28(1): 232-242

Corton T M, Bajita J B, Grospe F S, Pamplona R R, Assis CA Jr, Wassmann R, Lantin R S, Buendia, L V (2000) Nutrient Cycling in Agroecosystems, 58: 1-394 crossref(new window)

Denier van der Gon, HA.C and Neue, H.U., 1994, 'Impact of gypsum application on the methane emission from a wetland rice field', Global biogeochem. Cycles, 8, 127-134 crossref(new window)

Denier van der Gon, H.A.C., Neue, H.U., Lantin, R.S., Wassmann, R., Alberto, M.C, Aduna, J.B., Tan, M.J.P. 1993. Controlling factors of methane emissions from rice fields. In: Batjes, N.H., Bridges, E.M. (Eds.), World inventory of soil emission potentials, WISE Report 2. ISRIC, Wageningen, pp. 81-92

Dubey, S.K., (2001), Methane emission and rice agriculture, Current Science 81, 345-346

Garica, J L, Patel BKC, Ollivier O (2000) Taxonomic, phylogenetic and ecological diversity of methanogenic archaea. Anaerobe, 6: 205-226 crossref(new window)

Gogoi, N., Barua, K.K., Gogoi, B and Gupta, P.K., 2005. Methane emission characteristics and its relations with plant and soil parameters under irrigated rice ecosystem of northeast India, Chemosphere, 59: 1677-1684 crossref(new window)

Hattori, C., Ueki, A., Seto, T., Ueki, K., (2001), Seasonal variations in temperature dependence of methane production in paddy soil, Microbes and environments, 16, 227-233 crossref(new window)

Hori, K.K., Inubushi, S. Matsumoto and Wada, H., 1990., Competition for acetic acid between methane formation and sulfate reduction in the paddy soil, Jpn. J. Soil Sci. Plant. Nutr., 61: 572-578

Hori, K.K., Inubushi, S. Matsumoto and Wada, H, 1993. Competition for hydrogen between methane formation and sulfate reduction in a paddy soil, Jpn. J. Soil Sci.Plant. Nutr., 64: 363-367

Jakobsen, P., Patrick Jr.,W.H and Williams, B.G. (1981) Sulfide and methane formation in soils and sediments, Soil Science 132, 279-287 crossref(new window)

Khalil, N.F., Alnuami, N.M., and Jamal, M.A.1990. Agricultural Phosphogypsum in calcareous soils, In: Proceedings of the Int. Symposium on Phosphogypsum, Orlando, EL., vol. 1, pp. 333-347

Kristjansson, J.K., Schonheit, P. and Thauer, R.K., 1982, 'Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate', Arch. Microbiol. 131, 278-282 crossref(new window)

Lee, Y.B., Ho S. Ha, Park, B.K, Cho, J.S, and Kim, P.J.2002. Effect of fly ash and gypsum mixture on rice cultivation, Soil Sci. Plant Nutr., 48 (2): 171-178 crossref(new window)

Lindau, C.W.,Wickersham, P., DeLaune, R.D., Collins, J.W., Bollick, P.K, Scott., L.M and Lambremont, E.N., 1998. Methane and nitrous oxide evolution and $^{15}N$ and $^{226}Ra$ uptake as affected by application of gypsum and phosphogypsum to Louisiana rice, Agriculture, Ecosystems and Environment, 68: 165-173 crossref(new window)

Loeppert R H, Inskeep, W P (1996) Iron. In: Sparks D L, Page A L, Loeppert R H, Johnston C T, Sumner M.E, Bigham J M, (Eds.) Methods of soil analysis, Part 3, Chemical methods, Soil science society of America and American Society of Agronomy, Madison, USA, pp. 639-664

Lovely, D.R., Holmes, D.E and Nevin, K.P. 2004. Dissimilarity Fe (III) and Mn (IV) reduction, Adv. Microb.Physiol. 49: 219-286 crossref(new window)

Lueders, T. and Friedrich, M.W. (2002). Effects of amendment with Ferrihydrite and Gypsum on the structure and activity of Methanogenic populations in Rice field soil, Applied and Environmental Microbiology, 68(5): 2484-2494 crossref(new window)

Mariko S, Harazano Y, Owa N, Nouchi I (1991) Methane in flooded soil water and the emission through rice plants to atmosphere. Environ. Expt. Bot. 31: 343-350 crossref(new window)

Minami, K., 1994. Methane from rice production, Fert. Res. 37, 167-179 crossref(new window)

Neue, H.U. and Roger, P.A., 1993. Rice agriculture; Factors affecting emissions, In: Khalil, M.A.K (Ed.) Atmospheric methane: Sources, Sinks and Role in Global change. Springer-Verlag, Berlin

Nouchi, I., Hosono, T., Aoki, K, Minami, K., 1994. Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modeling, Plant and soil, 161, 195-208 crossref(new window)

Nozoe T., Nishibata Y., Sekiguchi T., and Inoue T. (1999). Effects of the addition of Fe-containing Slag fertilizers on the changes in Eh in paddy soils, Soil Sci. Plant Nutr. 45(3): 729-735. pp. 254-298 crossref(new window)

Patrick, W.H.Jr. and C.N., Reddy (1978), Chemical changes in rice soils, In: Soils and rice, pp. 361379, International Rice Research Institute, Los Banos, Philippines

RDA (Rural Development Administration, Korea), 1988. Methods of soil chemical analysis, National Institute of Agricultural Science and Technology, RAD, Suwon

RDA (Rural Development Administration, Korea), 1995. Standard investigation methods for agriculture experiment, p. 601, RDA, Suwon

RDA (Rural Development Administration, Korea), 1999. Fertilization standard of crop plants, National Institute of Agricultural Science and Technology, p. 148, RAD, Suwon

Rolston, D.E., 1986. Gas flux, p. 1103-1119, In: A.Klute (ed.), Methods of soil analysis, part I, 2nd ed., Agron.Monogr.9.ASA and SSSA, Madison, WI

Roy, R., H.D.Klubber, and R, Conrad, 1997. Early initiation of methane production in anoxic rice soil despite the presence of oxidants, FEMS Microbiol. Ecol. 24: 311-320 crossref(new window)

Schonheit, P., Kristjansson, J.K., and Thauer, R.K., 1982, 'Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for Ac', Arch. Microbiol. 132, 285-288 crossref(new window)

Sohn, B.K., Lee, D.J., Park, B.K., and Chae, K.S., 2007. Effects of Phospho-gypsum fertilizer as reclamation material in the newly reclaimed paddy fields, Korean J. Soil Sci.Fert., 40(2): 145-150

Singh, S., Singh, J.S. and Kashyap, A.K., 1999. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization, Soil Biology and Biochemistry, 31: 1219-1228 crossref(new window)

Singh, A.L., Joshi, Y.C., Chaudhari, V., and Zala, P.V., 1990. Effect of different sources of iron and sulfur on leaf chlorosis, nutrient yield of groundnut, Fert. Res.24, pp.85-96 crossref(new window)

US Environmental Protection Agency, 1993. Diffuse NORM wastes: Waste characterization and risk assessment, US EPA/Office of radiation programs, Draft RAE-9232/1, Washington, DC, pp.B2 1-27

Van Breemen, N., Feijtel, T.C.J., 1990. Soil processes and properties involved in the production of greenhouse gases, with special relevance to soil taxonomic systems, In: Bouwan, AF. (Ed.), Soils and greenhouse effect, Wiley, New York, pp. 195- 223

Van der Gon, HA.C., Neue, H.U., 1994. Impact of gypsum application on the methane emission from a wetland rice field, Global Biogeochem. Cycles 8, 127-134 crossref(new window)

Yagi, K., Chairoj, P., Tusuruta, H., Cholitkul, W., Minami, K., 1994. Methane emission from rice paddy fields in the central plain of Thailand, Soil Sci. Plant Nutrition, 40: 29-37 crossref(new window)