JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Lead Tolerance Profile of Pseudomonas Stuzeri in Liquid Culture
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Lead Tolerance Profile of Pseudomonas Stuzeri in Liquid Culture
Kim, Su-Jung; Jung, A-Young; Joo, Jin-Ho;
  PDF(new window)
 Abstract
Pseudomonas stutzeri strain KCCM 34719 was used in this experiment to determine the effects of increasing Pb(II) concentrations on its growth rate. To obtain optimum growth conditions, strain KCCM 34719 was cultivated in nutrient broth under various conditions, such as temperature, pH, and NaCl concentration. Optimal conditions for cell growth were of temperature, 8.0 of pH, and 3% of NaCl concentration, respectively. Growth response of bacterial cell to Pb(II) showed tolerance to concentrations ranging from 10 to 100 mg in liquid culture, following a growth pattern similar to the control. Growth rate was greatly inhibited at 200 mg of Pb(II).
 Keywords
Heavy metals;Metal tolerance;Optimum conditions;Pseudomonas stutzeri;
 Language
English
 Cited by
1.
Current research trends for heavy metals of agricultural soils and crop uptake in Korea, Korean Journal of Environmental Agriculture, 2012, 31, 1, 75  crossref(new windwow)
 References
1.
Sengupta, M. (1993) Environmental impacts of mining: monitoring, restoration, and control. CRC Press, Boca Raton, FL, USA. pp. 167-259

2.
British geological survey. (2006) Annual report of the British geological survey 2005-2006. Natural Environment Research Council. The United Kingdom of Great Britain. www.bgs.ac.uk/ annualreport/ 0506

3.
Adriano, D. C., Bollag, J. -M., Frankenberger, W. T. Jr. and Sims, R. C. (1999) Bioremediation of contaminated soils. ASA-CSA-SSSA, Madison, WI, USA. pp. 53-88

4.
Eccles, H. (1999) Treatment of metal-contaminated wastes: why select a biological process? T. Biotech. 17, 462-165 crossref(new window)

5.
Paul, E. A. (2007) Soil microbiology, ecology, and biochemistry. Elsevier Inc., Burlington, MA, USA. pp. 389-432

6.
Hughes, M. N. and Poole, R. K. (1989) Metals and microorganisms. Chapman & Hall, New York, USA. p 412

7.
Harbhajan, S. (2006) Mycoremediation: fungal bioremediation. John Wiley & Sons, Inc., Hoboken, NJ. USA. pp. 484-532

8.
Amils, R. and Ballester, A. (1999) Biohydrometallurgy and the environment toward the mining of the 21st century. Part B. Elsevier, Amsterdam. pp. 725-730

9.
Poole, R. K. and Gadd, G. M. (1989) Metal- microbe interactions. Special publications of the society for general microbiology. Volume 26. IRL Press, Oxford. pp. 119-130

10.
Poole, R. K. and Gadd, G. M. (1989) Metal- microbe interactions. Special publications of the society for general microbiology. Volume 26. IRL Press, Oxford. pp. 85-98

11.
Laskin, A. I., Bennett, J. W. and Geoffrey, G. (2001) Advances in applied microbiology. Academic Press, San Diego. pp. 135-169

12.
Chen, C. and Wang, J. (2007) Influence of metal ionic characteristics on their biosorpiton capacity by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 74, 911-917 crossref(new window)

13.
Singleton, P. and Sainsbury, D. (1987) Dictionary of microbiology and molecular biology. John Wiley & Sons Ltd., New York, NY, USA. p. 721

14.
Cho, J.-S., Han, M.-G., Lee, H.-J. and Heo, J.-S. (1997) Copper accumulation in cells of copper- tolerant bacteria, Pseudomonas stutzeri. Korean J. Environ. Agric. 16, 48-54

15.
Prescott, L. M., Harley, J. P. and Klein, D. A. (2005) Microbiology. McGraw-Hill, New York, NY, USA. pp. 109-132

16.
Sparks, D. L. (2003) Environmental soil chemistry. Academic Press. San Diego, CA, USA. pp.133-185

17.
White, C., Wilkinson, S. C. and Gadd, G. M. (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Int. Biodeter. Biodegradation. 36, 17-40

18.
Yilmaz, E. I. (2003) Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res. Microbio. 154, 409-415 crossref(new window)