JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Spatial Anaylsis of Agro-Environment of North Korea Using Remote Sensing I. Landcover Classification from Landsat TM imagery and Topography Analysis in North Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Spatial Anaylsis of Agro-Environment of North Korea Using Remote Sensing I. Landcover Classification from Landsat TM imagery and Topography Analysis in North Korea
Hong, Suk-Young; Rim, Sang-Kyu; Lee, Seung-Ho; Lee, Jeong-Cheol; Kim, Yi-Hyun;
  PDF(new window)
 Abstract
Remotely sensed images from a satellite can be applied for detecting and quantifying spatial and temporal variations in terms of landuse & landcover, crop growth, and disaster for agricultural applications. The purposes of this study were to analyze topography using DEM(digital elevation model) and classify landuse & landcover into 10 classes-paddy field, dry field, forest, bare land, grass & bush, water body, reclaimed land, salt farm, residence & building, and others-using Landsat TM images in North Korea. Elevation was greater than 1,000 meters in the eastern part of North Korea around Ranggang-do where Kaemagowon was located. Pyeongnam and Hwangnam in the western part of North Korea were low in elevation. Topography of North Korea showed typical `east-high and west-low` landform characteristics. Landcover classification of North Korea using spectral reflectance of multi-temporal Landsat TM images was performed and the statistics of each landcover by administrative district, slope, and agroclimatic zone were calculated in terms of area. Forest areas accounted for 69.6 percent of the whole area while the areas of dry fields and paddy fields were 15.7 percent and 4.2 percent, respectively. Bare land and water body occupied 6.6 percent and 1.6 percent, respectively. Residence & building reached less than 1 percent of the country. Paddy field areas concentrated in the A slope ranged from 0 to 2 percent(greater than 80 percent). The dry field areas were shown in the A slope the most, followed by D, E, C, B, and F slopes. According to the statistics by agroclimatic zone, paddy and dry fields were mainly distributed in the North plain region(N-6) and North western coastal region(N-7). Forest areas were evenly distributed all over the agroclimatic regions. Periodic landcover analysis of North Korea based on remote sensing technique using satellite imagery can produce spatial and temporal statistics information for future landuse management and planning of North Korea.
 Keywords
Landcover classification;Landsat TM;North Korea;DEM;Topography;
 Language
Korean
 Cited by
1.
북한 산림황폐지의 질감특성을 고려한 분할영상 기반 토지피복분류,김은숙;이승호;조현국;

대한원격탐사학회지, 2010. vol.26. 5, pp.477-487
2.
공개된 토지피복도를 활용한 위성영상 분류,홍우용;박완용;송현승;정철훈;어양담;김성준;

한국군사과학기술학회지, 2010. vol.13. 1, pp.147-155
3.
예성강 유역의 저수지 현황 분석을 위한 SPOT-5 위성자료의 이용,이진덕;이병환;송영석;

한국측량학회지, 2010. vol.28. 2, pp.255-263
4.
한국 주요 토양유형의 공간적 분포와 토양형성요인을 이용한 예측가능성 평가,박수진;손연규;홍석영;박찬원;장용선;

대한지리학회지, 2010. vol.45. 1, pp.95-118
5.
위성영상과 공간자료를 이용한 북한 지역의 재조림 CDM 대상지 선정 및 적지분석 방안,유성진;이우균;이승호;김은숙;이종렬;

한국지형공간정보학회지, 2011. vol.19. 3, pp.3-11
6.
고해상도 영상을 이용한 농경지 지도 작성 및 토지이용 변화 분석,이경도;홍석영;김이현;

한국토양비료학회지, 2012. vol.45. 6, pp.1164-1172 crossref(new window)
7.
RapidEye 영상을 이용한 북한의 논 면적 산정,홍석영;민병걸;이지민;김이현;이경도;

한국토양비료학회지, 2012. vol.45. 6, pp.1194-1202 crossref(new window)
8.
중국 동북지역의 농업기후지대 구분,정명표;허지나;박혜진;심교문;안중배;

한국농림기상학회지, 2015. vol.17. 2, pp.102-107 crossref(new window)
9.
UAS 기반의 수체탐지를 위한 영상분류기법 비교연구,이근상;김석구;최연웅;

한국지리정보학회지, 2015. vol.18. 3, pp.113-127 crossref(new window)
10.
3차원 모델링을 활용한 북한 무산광산일대의 자원량 및 생산량 추정,배성지;유재형;고상모;허철호;

자원환경지질, 2015. vol.48. 5, pp.391-400 crossref(new window)
11.
MODIS NDVI와 강수량 자료를 이용한 북한의 벼 수량 추정 연구,홍석영;나상일;이경도;김용석;백신철;

대한원격탐사학회지, 2015. vol.31. 5, pp.441-448 crossref(new window)
12.
Status of Rice Paddy Field and Weather Anomaly in the Spring of 2015 in DPRK,;;;;;;;

한국토양비료학회지, 2015. vol.48. 5, pp.361-371 crossref(new window)
13.
Landsat 영상을 활용한 북한 주요도시의 도시화 지수 분석,김준현;

한국측량학회지, 2015. vol.33. 4, pp.277-286 crossref(new window)
1.
Multi-temporal Analysis of Deforestation in Pyeongyang and Hyesan, North Korea, Korean Journal of Remote Sensing, 2016, 32, 1, 1  crossref(new windwow)
2.
Estimation of Paddy Field Area in North Korea Using RapidEye Images, Korean Journal of Soil Science and Fertilizer, 2012, 45, 6, 1194  crossref(new windwow)
3.
Estimation of future carbon budget with climate change and reforestation scenario in North Korea, Advances in Space Research, 2016, 58, 6, 1002  crossref(new windwow)
4.
A Study on Estimating Rice Yield in DPRK Using MODIS NDVI and Rainfall Data, Korean Journal of Remote Sensing, 2015, 31, 5, 441  crossref(new windwow)
5.
Classification of Agro-climatic zones in Northeast District of China, Korean Journal of Agricultural and Forest Meteorology, 2015, 17, 2, 102  crossref(new windwow)
6.
Farmland Use Mapping Using High Resolution Images and Land Use Change Analysis, Korean Journal of Soil Science and Fertilizer, 2012, 45, 6, 1164  crossref(new windwow)
7.
Status of Rice Paddy Field and Weather Anomaly in the Spring of 2015 in DPRK, Korean Journal of Soil Science and Fertilizer, 2015, 48, 5, 361  crossref(new windwow)
8.
3D Modeling Approaches in Estimation of Resource and Production of Musan Iron Mine, North Korea, Economic and Environmental Geology, 2015, 48, 5, 391  crossref(new windwow)
9.
A Comparative Study of Image Classification Method to Detect Water Body Based on UAS, Journal of the Korean Association of Geographic Information Studies, 2015, 18, 3, 113  crossref(new windwow)
10.
Urbanization Analysis of Major City in North Korea Using Landsat Imagery, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 2015, 33, 4, 277  crossref(new windwow)
 References
1.
Campbell, J. B. (1996) Introduction to remote sensing, 2nd ed. The Gilford Press, NewYork, NY, USA, p.4-5, 550-551

2.
Kim, G. Y., Kim, K. H., Kim, H. H., Shin, J. D., Lee, J. T., Jung, J. W., and Hong, S. Y. (2005) Estimating GHG emissions in agriculture based on IPCC guide lines, NIAST, RDA, Suwon, Korea, p.17

3.
Imagawa, T., Fukuhara, M., and Watanabe, T. (1997) A monitoring method of land cover/land use change in Naiman, inner Mongolia autonomous region, China using Landsat data, Japan Agric. Res. Quarterly 31,163-169

4.
Suzaki, J. and Shibasaki. R. (1997) Development of land cover classification method using NOAA AVHRR, Landsat TM, and DEM images, Asian Conf. Remote Sens. R-2-1-R-2-6

5.
Suzaki, J. and Shibasaki. R. (1998) Crop field extraction method using NDVI and texture from Landsat TM images, Proc. of 1998 Int'l Symposium on Remote Sensing, Gwangju, Korea, pp.159-162

6.
Hong, S. Y. (1999) Analysis on rice growth information and estimation of paddy field area by using remotely sensed data., Ph.D. Thesis, Kyungpook National University, Daegu, Korea

7.
Hong, S. Y., Rim, S. K., Lee, K. S., Jo, I. S., and Kim, K. U. (2001) Estimation of rice-planted area using Landsat TM Imagery in Dangjin-gun area, Korean J. of Agr. and Forest Meteo, 3,5-15

8.
Okamoto, K., Yamakawa, S., and Kawashima, H. (1995) Estimation of flood damage to rice production in North Korea in 1995, International Journal of Remote Sensing, 19,365-371

9.
Jensen, J. R. (1996) Introductory digital image processing; A remote sensing perspectives, 2nd Ed. Prentice Hall, Upper Saddle River, NJ, USA, p.124-135

10.
Lillesand, T. M. and Kiefer, R. W. (1994) Remote sensing and image interpretatio,. 3rd Ed. John Wiley & Sons, Inc., New York, NY, USA, p.466-471, 527-531

11.
Richards, J. A. and Jia, X. (1999) Remote sensing digital image analysis, 3rd Ed. Springer-Verlag, Berlin, Germany, p.56-63, 133-148

12.
Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E. (1976) A land use and land cover classification for use with remote sensor data, U.S. Geological Survey Professional Paper 964. Washington, DC: U.S. Govt. Printing Office, Washington D.C. USA

13.
IPCC. (2003) Good practice guidance for land use, land use change and forestry, Institute for Global Environmental Strategies

14.
Shin, D. W., Park, S. H., Park, K. R., Kim, J. H., Lee, K. S., and Lee, S. R. (1998) Agricultural technology of North Korea. Ohsung Publishing Co

15.
Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1973) Monitoring vegetation systems in the great plains with ETRA, 3rd ETRS Symposium, NASA SP-353, U.S. Govt. Printing Office, Washington D.C. USA

16.
Crist, E. P., and Cicone, R. C. (1984) Application of the tasseled cap concept to simulated thematic mapper data, PE & RS. 52,81-86

17.
ERDAS. (1997) ERDAS Field Guide. 4th Ed. Atlanta, Georgia, USA

18.
North Korea Road Atlas. (1997) Woojun Map Publishing Cor