Advanced SearchSearch Tips
Effect of Sludge Age on the Toxicity of Cr6+, Zn2+, and Cd2+ in INT-Dehydrogenase Assay
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Sludge Age on the Toxicity of Cr6+, Zn2+, and Cd2+ in INT-Dehydrogenase Assay
Ryu, Hong-Duck; Lee, Sang-Ill; Kim, Jong-Soo;
  PDF(new window)
This study was initiated to elucidate the relation between the toxicity of , , and and sludge age (Solids retention time, SRT). The effect of SRT on the toxicity of , , and in activated sludge system was investigated with INT-dehydrogenase assay. Experimental results showed that the inhibitory effects of , , and were reduced as the sludge age increased from SRT 5 d to SRT 25 d. It is noteworthy that the experimental results enabled to determine the relative toxicity of the tested metals depending on the sludge age. At the SRT of 5 and 9 days, the order of toxicity of the three metals to the activated sludge was > > (the value of , , and was 16.15, 25.90, and 32.49 mg/L, respectively) and > > (the value of , , and was 39.12, 27.93, and 42.31 mg/L, respectively), respectively. However, the toxicity of three metals was almost same at the SRT of 14 and 25 days (the range of in SRT 14 and 25 days was from 49.80 mg/ L to 53.44 mg/L among three heavy metals). This results would be explained by that the quantity of biopolymer formed in short SRT was small, whereas that in long SRT was large. Consequently, it is recommended that sludge age be maintained at long SRT in order to avoid the toxicity inhibition of heavy metals such as , , and .
;;INT-dehydrogenase;Relative toxicity;Sludge age;;
 Cited by
우리나라 농경지 중금속 동태 및 작물흡수 연구동향,이지호;김지영;고우리;정은정;;정구복;김두호;김원일;

한국환경농학회지, 2012. vol.31. 1, pp.75-95 crossref(new window)
활성슬러지의 기질 종류와 농도에 따른 활성도 및 독성물질(Cu) 노출에 따른 활성도 변화,김진수;이지영;강민구;이상일;

한국수처리학회지, 2016. vol.24. 3, pp.11-20 crossref(new window)
Current research trends for heavy metals of agricultural soils and crop uptake in Korea, Korean Journal of Environmental Agriculture, 2012, 31, 1, 75  crossref(new windwow)
Madoni, P., Davoli, D., Gorbi, G. and Vescovi, L. (1996) Toxic effects of heavy metals on the activated sludge Protozoan community, Water Res. 30(1), 135-141 crossref(new window)

Leduc, J. G., Ferroni, G. D. and Trevors, J. T. (1997) Resistance of heavy metals in different strains of Thiobacillus ferroxidans, World J. Microb. Biotechnol. 13, 453-462 crossref(new window)

Principi, P., Villa, F., Bernasconi, M. and Zanardini, E. (2006) Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization, Water Res. 40, 99-106 crossref(new window)

Gokcay, C. F. and Yetis, U. (1991) Effect of chromium (VI) on activated sludge, Water Res. 25(1), 65-73 crossref(new window)

Yetis, U., Demirer, G. N. and Gokcay, C. F. (1999) Effect of Cr(VI) on the biomass yield of activated sludge, Enzyme Microb. Technol. 25, 48-54 crossref(new window)

Bruins, M. R., Kapil, S. and Oehme, F. W. (2000) Microbial resistance to metals in the environment, Ecotoxicol. Environ. Saf. 45, 198-207 crossref(new window)

Ghosh, M. M. and Zugger, P. D. (1973) Toxic effect of mercury on the activated sludge process, J. Water. Pollut. Control Fed. 45, 424-429

Zarnovsky, L., Derco, J., Kuffa, R. and Drtil, M. (1994) The Influence of cadmium on activated sludge activity. Water Sci. Technol. 30, pp. 235-242

Beyenal, N. Y., Ozbelge (Baser), T. A. and Ozbelge, H. O. (1997) Combined effects of $Cu^{2+}$ and $Zn^{2+}$ on activated sludge process, Water Res. 31(4), 699-704 crossref(new window)

Wong, K., Zhang, M., Li, X. and Lo, W. (1997) A luminescence-based scanning respirometer for heavy metal toxicity monitoring, Biosens. Bioelectron. 12, 125-133 crossref(new window)

Arican, B. and Yetis, U. (2003) Nickel soprtion by acclimatized activated sludge culture, Water Res. 37, 3508-3516 crossref(new window)

Gikas, P. and Romanos, P. (2006) The effect of tri-valent (Cr(III)) and hexa-valent (Cr(VI)) on the growth rate of activated sludge, J. Hazard. Mater. B. 133, 212-217 crossref(new window)

Dilek, F. B., Gokcay, C. F. and Yetis, U. (1998) Combined effects of Ni(II) and Cr(VI) on activated sludge, Water Res. 32(2), 303-312 crossref(new window)

Stasinakis, A. S., Mamais, D., Thomaidis, N. S. and Lekkas, T. D. (2002) Effect of chromium (VI) on bacterial kinetics of heterotrophic biomass of activated sludge, Water Res. 36, 3341-3349 crossref(new window)

Pamukoglu, M. Y. and Kargi, F. (2007) Mathematical modeling of copper(II) ion inhibition on COD removal in an activated sludge unit, J. Hazard. Mater. 146, 372-377 crossref(new window)

Gutierrez, M., Etxebarria, J. and Fuentes, L. (2002) Evaluation of wastewater toxicity: comparative study between Microtox$^{\circledR}$ and activated sludge oxygen uptake inhibition, Water Res. 36, 919-924 crossref(new window)

Kelly, C. J., Tumsaroj, N. and Lajoie, C. A. (2004) Assessing wastewater metal toxicity with bacterial bioluminescence in a bench-scale wastewater treatment system, Water Res. 38, 423-431 crossref(new window)

Bitton, G. and Koopman, B. (1982) Tetrazolium reduction-malachite green methods for assessing the viability of filamentous bacteria in activated sludge, Appl. Environ. Microbiol. 43, 964-966

Anderson, K., Koopman, B. and Bitton, G. (1998) Evaluation of INT-dehydrogenase assay for heavy metal inhibition of activated sludge, Water Res. 22(3), 349-353 crossref(new window)

Kim, C. W., Koopman, B. and Bitton, G. (1994) INT-dehydrogenase activity test for assessing chlorine and hydrogen peroxide inhibition of filamentous pure cultures and activated sludge, Water Res. 28(5), 1117-1121 crossref(new window)

Wuertz, S., Pfleiderer, P., Kriebitzsch, K., Spath, R., Griebe, T., Coello-Oviedo, D., Wilderer, P. A. and Flemming, H. C. (1998) Extracellular redox activity in activated sludge, Water. Sci. Technol. 37(4-5), 379-384

Hongwei, Y., Zhanpeng, J., Shaoqi, S. and Tang, W. Z. (2002) INT-dehydrogenase activity test for assessing anaerobic biodegradability of organic compounds, Ecotoxicol. Environ. Saf. 53, 416-421 crossref(new window)

Rossin, A. C., Sterritt, R. M. and Lester, J. N. (1982) The influence of process parameters on the removal of heavy metals in activated sludge, Water Air Soil Poll. 17, 185-198

Bitton, G. (1999) Wastewater Microbiology, A John Wiley & Sons, Inc., New York

Dalzell, D. J. and Christofi, N. (2002) An ATP luminescence method for direct toxicity assessment of pollutants impacting on the activated sewage sludge process, Water Res. 36, 1493-1502 crossref(new window)

Ren, S. and Frymier, P. D. (2003) Kinetics of the toxicity of metals to luminescent bacteria, Adv. Environ. Res. 7, 537-547 crossref(new window)

Ghosh, S. K., Doctor, P. B., Derasari, A. and Amin, R. J. (2004) Toxicity screening of metals with special reference to quantitative approach, Toxicol. Mech. Method 14(4), 223-226 crossref(new window)

Nweke, C. O., Alisi, C. S., Okolo, J. C. andNwanyanwu, C. E. (2007) Toxicity of zinc to heterotrophic bacteria from a tropical river sediment, Appl. Ecol. Environ. Res. 5(1), 123-132

Vankova, S., Kupec, J. and Hoffmann, J. (1999) Toxicity of chromium to activated sludge. Ecotox. Environ. Safe. 42, 16-21 crossref(new window)