JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Dechlorination of Organochlorine Insecticide, Endosulfan by Zerovalent Iron
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Dechlorination of Organochlorine Insecticide, Endosulfan by Zerovalent Iron
Shin, Hyun-Su; Kim, Taek-Kyum; Kim, Jang-Eok;
  PDF(new window)
 Abstract
The dechlorination of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) and its metabolite, endosulfan sulfate via reaction with zerovalent iron under various pH conditions was studied using aqueous solution. The reaction products, which were probably produced from endosulfan and endosulfan sulfate by ZVI were identified by GC-MS. The lower the pH of reaction solution, the higher the transformation rate of endosulfan and endosulfan sulfate. The transformation rates of endosulfan and endosulfan sulfate in pH 3.0 by ZVI were 28% and 90% but those of endosulfan and endosulfan sulfate in mixture solution of water/acetone were 65% and 92%, respectively. The pH of reaction solution after ZVI treatment was increased to pH 10. Endosulfan was hydrolyzed at pH 10 but endosulfan sulfate was not hydrolyzed. Two unknown peaks were produced from endosulfan sulfate by treatment of ZVI. As a result of GC-MS analysis, unknown peaks were guessed to be structural isomer substituted hydrogen for chlorine.
 Keywords
Endosulfan;endosulfan sulfate;zerovalent iron;dechlorination;
 Language
Korean
 Cited by
1.
살균제 Tolclofos-methyl의 화학적 처리에 의한 분해,신갑식;전영환;김효영;황정인;이상만;신재호;김장억;

한국환경농학회지, 2010. vol.29. 4, pp.396-401 crossref(new window)
2.
ASE 및 SPE 복합정제법을 이용한 친환경농업토양의 다성분잔류농약 분석,문경미;박진우;이영근;최영환;

농업생명과학연구, 2011. vol.45. 5, pp.73-80
1.
Degradation of Fungicide Tolclofos-methyl by Chemical Treatment, Korean Journal of Environmental Agriculture, 2010, 29, 4, 396  crossref(new windwow)
 References
1.
Lee, K. B., Shim, J. H. and Suh, Y. T. (1994) In vivo metabolism of endosulfan in carp(Cyprinus carpio L.), Agric. Chem. and Biotech. 37(3), 194-202

2.
Tomlin, C. D. S. (1997) The Pesticide Manual, 11th ed., British Crop Protection Council, UK, p.459-461

3.
Awasthi, N., Ahuja, R. and Kumar, A. (2000) Factors influencing the degradation of soil-applied endosulfan isomers, Soil Biology & Biochemistry, 32, 1697-1705 crossref(new window)

4.
Kullman, S. W. and Matsumura, F. (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan, Applied and Environmental Microbiology, 662(2), 593-600

5.
Chaudhuri, K., Selvaraj, S. and Pal, A. K. (1999) Studies on the genotoxicity of endosulfan in bacterial systems, Mutation Research, 439, 63-67 crossref(new window)

6.
Hack, R., Ebert, E. and Leist, K. H. (1995) Chronic toxicity and carcinogenicity studies whith the insecticide endosulfan in rats and mice, Food Chem. Toxicol. 33(11), 941-950 crossref(new window)

7.
Siantar, D. P., Schreier, C. G., Chou, C.-S. and Reinhard, M. (1996) Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero valent iron or hydrogen/palladium catalysts, Water Res. 30(10), 2315-2322 crossref(new window)

8.
Korte, N. E. Zutman, J. L., Schlosser, R. M., Liang, L., Gu, B., and Fernando, Q. ( 2000) Field application of palladized iron for dechlorination of trichloroethene, Waste Management, 20, 687-694 crossref(new window)

9.
Liu, Y., Yang, F., Yue, P. L. and Chen, G. (2001) Catalytic dechlorination of chlorophenols in water by palladium/iron, Water. Res., 35(8), 1887-1899 crossref(new window)

10.
Chen, J.-L., Al-Abed, S. R., Ryan, J. A. and Li, Z. (2001) Effects of pH on dechlorination of trichloroethylene by zero-valent iron, Journal of Hazardous Materials, B83, 243-254

11.
Morales, J., Hutcheson, R. and Cheng, I. F. (2002) Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles, Journal of Hazardous Material, B90, 97-108

12.
Cheng, S.-F. and Wu, S.-C. (2000) The enhancement methods for the degradation of TCE by zero-valent meta, Chemosphere, 41, 1263-1270 crossref(new window)

13.
Cho, H.-H. and Park, J.-W. (2002) Effect of surfactant and natural organic matter on reductive dechlorination of TCE by Zero-valent iron, J. of Korean Society of Environmental Engineers, 24(4), 689-696

14.
Tratney, P. G., Sherer M. M., Deng, B. and Hu, S. (2001) Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron, Wat. Res., 35(18), 4435-4443 crossref(new window)

15.
Kim, D. H., Choi, C-L., Kim, T-H., Park, M and Kim, J-E., (2007) Degradation patterns of organophosphorus insecticide, chlorpyrifos by functional zerovalent iron, J. Korean Soc. Appl. Biol. Chem., 50(4), 321-326

16.
Lee, K-H., Kim, T-H and Kim, J-E (2008) Oxidative degradation of the herbicide dicamba induced by zerovalent iron, Korean J. of Environmental Agriculture, 27(1), 86-91 crossref(new window)

17.
Yun, J-K., Kim, T-H and Kim, J-E (2008) Dechlorination of the fungicide chlorothalonil by zerovalent iron and manganese oxides, The Korean Journal of Pesticides Science, 12(1), 43-49

18.
Dombek, T., Dolan, E., Schultz, J. and Klarup, D. (2001) Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions, Environmental Pollution, 111, 21-27 crossref(new window)

19.
Monson, S. J., Ma, L., Cassada, D. A. and Spalding, R. F. (1998) Confirmation and method development for dechlorinated atrazine from reductive dehalogenation of atrazine with $Fe^0$, Analytica Chimica Acta, 373, 153-160 crossref(new window)

20.
Ghauch, A., Gallet, C., Charef, A., Rima, J. and Martin-Bouyer, M. (2001) Reduction degradation of carbaryl in water by zero-valent iron, Chemosphere, 42, 419-424 crossref(new window)

21.
Hundal, L. S., Singh, J., Bier, E. L., Shea, P. J., Comfort, S. D. and Powers, W. L. (1997) Removal of TNT and RDX from water and soil using iron metal, Environmental Pollution, 97, 55-64 crossref(new window)

22.
Agrawal, A. and Tratnyek, P. G. (1996) Reduction of nitro aromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30, 153-160 crossref(new window)

23.
Engelman, M. D., Doyle, J. D. and Cheng, I. F. (2001) The complete dechlorination of DDT by magnesium/palladium bimetallic particle, Chemosphere, 43, 195-198 crossref(new window)

24.
Zhang, W.-X., Wang, C.-B. and Lien, H.-L. (1998) Treatment of chlorinated organic contamintants with nanoscale bimetalic particles, Catalysis Today, 40, 387-395 crossref(new window)