Advanced SearchSearch Tips
Biodegradation of Endosulfan by Klebsiella oxytoca KE-8 Immobilized on Activated Carbon
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Biodegradation of Endosulfan by Klebsiella oxytoca KE-8 Immobilized on Activated Carbon
Jo, Min-Sub; Lee, Jung-Bok; Kim, Jang-Eok; Sohn, Ho-Yong; Jeon, Chun-Pyo; Choi, Chung-Sig; Kwon, Gi-Seok;
  PDF(new window)
Endosulfan degrading ability of Klebsiella oxytoca KE-8 immobilized by entrapment with activated carbon was examined. Endosulfan degradation by the immobilized bacterial strains on several different activated carbon based support materials was investigated. Based on results, activated carbon ( mesh) was chosen as a support material. The immobilized Klebsiella oxytoca KE-8 with the cell density of 4 mg (dry weight) degraded 22.18 ug endosulfan within 5 days at pH 7.0, in batch shake flask cultures. Also, we an experimented recycle packed bed column mode and continuous packed bed column mode for endosulfan degradation. Under optimum operation condition, the immobilized cells in a laboratory scale pack bed column with support beads were able to degrade endosulfan completely in defined minimal salt medium at a maximum rate of 129.6 ug per day. Moreover, the endosulfan degradation activity could be demonstrated at for one month without significant decrease in activity. Results of this study suggest that immobilized cells of Klebsiella oxytoca KE-8 might be applicable to endosulfan contaminated site.
Biodegradation;Detoxification;Endosulfan;Immobilization;Klebsiella oxytoca;
 Cited by
천연제오라이트 세라믹볼을 이용한 곤충병원성 곰팡이 포자 생산 방법,이중복;김범수;주우홍;권기석;

한국환경농학회지, 2016. vol.35. 1, pp.72-78 crossref(new window)
Culture Method of Spore for Entomopathogenic Fungus Using Natural Zeolite Ceramic Ball, Korean Journal of Environmental Agriculture, 2016, 35, 1, 72  crossref(new windwow)
Halophilic bacterium JAS4 in biomineralisation of endosulfan and its metabolites isolated from Gossypium herbaceum rhizosphere soil, Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 4, 1748  crossref(new windwow)
Use of Ca-alginate immobilized Pseudomonas aeruginosa for repeated batch and continuous degradation of Endosulfan, 3 Biotech, 2016, 6, 2  crossref(new windwow)
Awasthi, N., Manickam, N., Kumar, A. (1997) Biodegradation of endosulfan by a bacterial coculture. Bull. Environ. Contam. Toxicol. 59, 928-934. crossref(new window)

Awasthi, N., Ahuja, R., Kumar, A. (1997) Factors influencing the degradation of soil-applied endosulfan isomers. Soil. Biology. Biochemistry. 32, 1697-1705. crossref(new window)

Awasthi, N., Singh, A.K., Jain, R.K., Khangarot, B.S., Kumar, A. (2003) Degradation and detoxification of endosulfan isomers by a defined co-culture of two Bacillus strains. Appl. Microbiol. Biotechnol. 62, 279-283. crossref(new window)

Dhar, G.M., Shimura, M., Kimbara, K. (1998) Degradation of polychlorinated biphenyl by cells of Rhodococcus opacus strain TSP203 immobilized in alginate and in solution. Enzyme Microb. Technol. 23, 34-41. crossref(new window)

Ehrhardt, H.M., Rehm, H.J. (1985) Phenol degradation by microorganisms adsorbed on activated cabon. Appl Microbiol Biotechnol. 21, 32-36.

Ehrhardt, H.M., Rehm, H.J. (1989) Semicontinuous and continuous degradation of phenol by Pseudomonas putida P8 adsorbed on activated carbon. Appl. Microbiol. Biotechnol. 30, 312-317.

Jianlong, W., Xiangchun, Q., Liping, H., Yi, Q., Hegemann, W. (2002) Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Res. 36, 2288-2296. crossref(new window)

Karigar, C., Mahesh, A., Nagenahalli, M., Yun, D.J. (2006) Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation. 17, 47-55. crossref(new window)

Khaled, A.S., Gedaliah, S., Dan, L., Robert, A., Carlos, G.D. (1996) Microbial degradation of aromatic and polyaromatic toxic compounds adsorbed on powdered activated carbon. J. Biotechnol. 51, 265-272. crossref(new window)

Kok, F.N., Arica, M.Y., Hahcigil, C., Alaeddinoglu, G., Hasirci, V. (1999) Biodegradation of aldicarb in a packed-bed reactor by immobilized Methylosinus. Enzyme Microb. Technol. 24, 291-296. crossref(new window)

Kullman, S.W., Matsumura, F. (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl. Environ. Microbiol. 62, 593-600.

Kwon, G.S., Sohn, H.Y., Shin, K.S., Kim, E., Seo, B.I. (2005) Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl. Microbiol. Biotechnol. 67, 845-850. crossref(new window)

Lee, J.B., Sohn, H.Y., Shin, K.S., Jo, M.S., Kim, J.E., Lee, S.W., Shin, J.W., Kum, E.J., Kwon, G.S. (2006) Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate. J. Agric. Food. Chem. 54, 8824-8828. crossref(new window)

Miles, J.R., Moy, P. (1979) Degradation of endosulfan and its metabolites by a mixed culture of soil microorganisms. Bull. Environ. Contam. Toxicol. 23, 13-19. crossref(new window)

Mordocco, A., Kuek, C., Jenkins, R. (1999) Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Enzyme Microb. Technol. 25, 530-536.

Morsen, A., Rehm, H.J. (1987) Degradation of phenol by a mixed culture of Pseudomonas putida and Cryptococcus elinovii adsorbed on activated carbon. Appl. Microbiol. Biotechnol. 26, 283-288. crossref(new window)

Morsen, A., Rehm, H.J. (1990) Degradation of phenol by a defined mixed culture immobilized by adsorption on activated carbon and sintered glass. Appl. Microbiol. Biotechnol. 33, 206-212.

Murakami, N.T., Kirimura, K., Kino, K. (2003) Degradation of dimethyl sulfoxide by the immobilized cells of Hyphomicrobium denitrificans WU-K217. J. Biosci. Bioeng. 15, 199-204.

Pai, S.L., Hsu, Y.L., Chong, N.M., Sheu, C.S., Chen, C.H. (1995) Continuous degradation of phenol by Rhodococcus sp. immobilized on granuar activated carbon and in calcium alginate. Bioresource. Technology. 51, 37-42. crossref(new window)

Pazarlioglu, N.K., Telefoncu, A. (2005) Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochemistry. 40, 1807-1814. crossref(new window)

Prieto, M.B., Hidalgo, A., Serra, J.L., Llama, M.J. (2002) Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on biolite in a packed-bed reactor. Appl. Microbiol. Biotechnol. 97, 1-11.

Rahman, R.N.Z.A., Ghazali, F.M., Salleh, A.B., Basri, M. (2006) Biodegradation of hydrocarbon contamination by immobilized bacterial cells. J. Microbiol. 44, 354-359.

Sethunathan, N., Megharaj, M., Chen, Z., Singh, N., Kookana, R.S., Naidu, R. (2002) Persistence of endosulfan and endosulfa sulfate in soil as affected by moisture regime and organic matter addition. Bill. Environ. Contam. Toxicol. 68, 725-731. crossref(new window)

Siddique, T., Okeke, B.C., Arshad, M., Frankenberger, W.T. (2003)a. Enrichment and isolation of endosulfan-degrading microorganisms. J. Environ. Qual. 32, 47-54. crossref(new window)

Siddique, T., Okeke, B.C., Arshad, M., Frankenberger, W.T. (2003)b. Biodegradation kinetics of endosulfan by Fusarium ventricosum and a Pandoraea species. J. Agric. Food. Chem. 51, 8015-8109. crossref(new window)

Sutherland, T.D., Home, I., Lacey, M.J., Harcourt, R.L., Russell, R.J., Oakeshott, J.G. (2000) Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66, 2822-2828. crossref(new window)

Sutherland, T.D., Home, I., Russell, R.J., Oakeshott, J.G. (2002) Gene cloning and molecular characterization of a two-enzyme system catalyzing the oxidative detoxification of ${\beta}$-endosulfan. Appl. Environ. Microbiol. 68, 6237-6245. crossref(new window)

Sutherland, T.D., Home, I., Weir, K.M., Russell, R.J., Oakeshott, J.G. (2004) Toxicity and residues of endosulfan isomers. Rev. Environ. Contam. Toxicol. 183, 99-113. crossref(new window)

Suzuki, T., Yamaguchi, T., Ishida, M. (1998) Immobilization of Prototheca zopfii in calcium- alginate beads for the degradation of hydrocarbons. Process. Biochemistry. 33, 541-546. crossref(new window)