JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Seasonal Monitoring of Residual Veterinary Antibiotics in Agricultural Soil, Surface Water and Sediment Adjacent to a Poultry Manure Composting Facility
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Seasonal Monitoring of Residual Veterinary Antibiotics in Agricultural Soil, Surface Water and Sediment Adjacent to a Poultry Manure Composting Facility
Lee, Sang-Soo; Kim, Sung-Chul; Kim, Kwon-Rae; Kwon, Oh-Kyung; Yang, Jae-E.; Ok, Yong-Sik;
  PDF(new window)
 Abstract
Concentration of antibiotics including a tetracycline group (TCs) of tetracycline (TC), chlortetracycline (CTC), and oxytetracycline (OTC), a sulfonamide group (SAs) of sulfamethoxazole (SMX), sulfathiazole (STZ), and sulfamethazine (SMT), an ionophore group (IPs) of lasalocid (LSL), monensin (MNS), and salinomycin (SLM), and a macrolide group (MLs) of tylosin (TYL) was determined from samples collected from the agricultural soil, stream water, and sediment. For the agricultural soil samples, the concentration of TCs had the highest value among all tested antibiotic`s groups due to its high accumulation rate on the surface soils. The lower concentrations of SAs in the agricultural soils may be resulted from its lower usage and lower distribution coefficient (Kd) compared to TCs. The concentration of TCs in stream water was significantly increased through June to September. It would be likely due to soil loss during an intensive rainfall event and a reduction of water level after the monsoon season. A significant amount of TCs in the sediment was also detected due to its accumulation from runoff, which occurred by complexation of divalent cations, ion exchange, and hydrogen bonding among humic acid molecules. To ensure environmental or human safety, continuous monitoring of antibiotics residues in surrounding ecosystems and systematic approach to the occurrence mechanism of antibiotic resistant bacteria are required.
 Keywords
Ionophores;Macrolides;Sediment;Soil;Sulfonamide;Tetracyclines;Water;
 Language
Korean
 Cited by
1.
Treatment of Pharmaceutical Wastewaters by Hydrogen Peroxide and Zerovalent Iron,;;;

Environmental Engineering Research, 2014. vol.19. 1, pp.9-14 crossref(new window)
2.
Estimating Predicted Environmental Concentration of Veterinary Antibiotics in Manure and Soil,;;

한국토양비료학회지, 2015. vol.48. 2, pp.100-104 crossref(new window)
1.
Treatment of Pharmaceutical Wastewaters by Hydrogen Peroxide and Zerovalent Iron, Environmental Engineering Research, 2014, 19, 1, 9  crossref(new windwow)
2.
Estimating Predicted Environmental Concentration of Veterinary Antibiotics in Manure and Soil, Korean Journal of Soil Science and Fertilizer, 2015, 48, 2, 100  crossref(new windwow)
 References
1.
Blackwell, P.A., Kay, P., Ashauer, R., Boxall, A.B.A., 2009. Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils, Chemosphere 75, 13-19.

2.
Boxall, A.B.A., Blackwell, P., Cavallo, R., Kay, P., Tolls, J., 2002. The sorption and transport of a sulphonamide antibiotic in soil systems, Toxicol. Lett. 131, 19-28. crossref(new window)

3.
Choi, K., Kim, Y., Park, J., Park, C.K., Kim, M., Kim, H.S., Kim, P., 2008. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea, Sci. Total Environ. 405, 120-128. crossref(new window)

4.
Christian, T., Schneider, R.J., Farber, H.A., Skutlarek, D., Meyer, M.T., Goldbach, H.E., 2003. Determination of antibiotic residues in manure, soil, and surface waters, Acta hydrochim. Hydrobiol. 31, 36-44. crossref(new window)

5.
Diaz-Cruz, M.S., Barcelo, D., 2006. Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry, Anal. Biochem. 386, 973-985.

6.
Ha, J.I., Hong, K.S., Song, S.U., Jung, S.C., Min, Y.S., Sin, H.C., Lee, K.O., Lim, K.J., Park, J.M., 2003. Survey of Antimicrobial Agents Used in Livestock and Fishes, Korean Soc. Vet. Public Health 27, 205-217.

7.
Hamscher, G., Sczesny, S., Hoper, H. Nau, H., 2002. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry, Anal. Chem. 74, 1509-1518. crossref(new window)

8.
Hu, D., Coats, J.R., 2007. Aerobic degradation and photolysis of tylosin in water and soil, Environ. Toxicol. Chem. 26, 884-889. crossref(new window)

9.
Hu, D., Coats, J.R., 2009. Laboratory evaluation of mobility and sorption for the veterinary antibiotic, tylosin, in agricultural soils, J. Environ. Monit. 11, 1634-1638. crossref(new window)

10.
Jorgensen, S.E., Halling-Sorensen, B., 2000. Drugs in the environment, Chemosphere 40, 691-699. crossref(new window)

11.
Karci, A.. Balcioglu, I.A., 2009. Investigation of the tetracycline, sulfonamide and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey, Sci. Total Environ. 407, 4652-4664. crossref(new window)

12.
Kay, P., Blackwell, P.A. Boxall, A.B., 2005. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land, Chemosphere 60, 497-507. crossref(new window)

13.
Kim, K.R., Owens, G., Kwon, S.I., So, K.H., Lee, D.B., Ok, Y.S., 2010. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment, Water Air Soil Pollut. Published online: DOI: 10.1007/s11270-010-0412-2.

14.
Kim, S.C., Carlson, K., 2007. Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS, Anal. Bioanal. Chem. 387, 1301-1315. crossref(new window)

15.
Kim, S.C., Yang, J.E., Ok, Y.S., Skousen, J., Kim, D.G., Joo, J.H., 2010. Accelerated metolachlor degradation in soil by zerovalent iron and compost amendments, Bull. Environ. Contam. Toxicol. 84, 459-464. crossref(new window)

16.
Lee, H.Y., Lim, J.E., Kim, S.C., Kim, K.R., Kwon O.K., Yang, J.E., Ok, Y.S., 2009a. Transport of selected veterinary antibiotics (tetracyclines and sulfonamides) in a sandy loam soil: laboratory-scale soil column experiments, J. Korean Soc. Environ. Eng. 31, 941-948.

17.
Lee, H.Y., Lim, J.E., Kwon, O.K., Kim, S.C., Seo, Y.H., Yang, J.E., Ok, Y.S., 2009b. Removal of antibiotics in soil and water: a literature review, J. Agric. Life Sci. 20, 45-54.

18.
Lee, H.Y., Lim, J.E., Kim, S.C., Kim, K.R., Lee, S.S., Kwon, O.K., Yang, J.E., Ok, Y.S., 2010. Environmental monitoring of selected veterinary antibiotics in soils, sediments and water adjacent to a poultry manure composting facility in Gangwon Province, Korea, J. Korean Soc. Environ. Eng. 32, 278-286.

19.
Lim, J.E., Kim, S.C., Lee, H.Y., Kwon, O.K., Yang, J.E., Ok, Y.S., 2009. Occurrence and distribution of selected veterinary antibiotics in soils, sediments and water adjacent to a cattle manure composting facility in Korea, J. Korean Soc. Environ. Eng. 31, 681-688.

20.
Loftsson, T., Hreinsdottir, D., 2006. Determination of aqueous solubility by heating and equilibration: a technical note, AAPS Pharm. Sci. Tech. 7, E1-E4.

21.
Martinez-Carballo, E., Gonzalez-Barreiro, C., Scharf, S., Gans, O., 2007. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria, Environ. Pollut. 148, 570-579. crossref(new window)

22.
Migliore, L., Cozzolino, S., Fiori, M., 2003. Phytotoxicity to and uptake of enrofloxacin in crop plants, Chemosphere 52, 1233-1244. crossref(new window)

23.
Ok, Y.S., Kim, S.C., Kim, K.R., Lee, S.S., Moon, D.H., Lim, K.J., Sung, J.K., Hur, S.O., Yang, J.E., 2010. Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea, Environ. Monit. Assess. Published online: DOI 10.1007/s10661-010-1625-y.

24.
Pailler, J.Y., Krein, A., Pfister, L., Hoffmann, L., Guignard, C., 2009. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg, Sci. Total Environ. 407, 4736-4743. crossref(new window)

25.
Pei, R., Kim, S.C., Carlson, K.H., Pruden, A., 2006. Effects of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG), Water Res. 40, 2427-2435. crossref(new window)

26.
Rabolle, M., Spliid, N.H., 2000. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil, Chemosphere 40, 715-722. crossref(new window)

27.
Seo, Y.H., Choi, J.K., Kim, S.K., Min, H.K., Jung, Y.S., 2007. Prioritizing environmental risks of veterinary antibiotics based on the use and the potential to reach environment, Korean J. Soil Sci. Fertilizer 40, 43-50.

28.
Son, H.J., Jung J.M., Hwang, Y.D., Roh, J.S., Yu, J.P., 2008. Effects of activated carbon types and service life on adsorption of tetracycline antibiotic compounds in GAC process, J. Korean Soc. Environ. Eng. 20, 925-932.

29.
Thiele-Bruhn, S., 2003. Pharmaceutical antibiotic compounds in soils: a review, J. Plant Nutr. 166, 145-167. crossref(new window)

30.
Tolls, J., 2001. Sorption of veterinary pharmaceuticals in soils: a review, Environ. Sci. Technol. 35, 3397-3406. crossref(new window)