Advanced SearchSearch Tips
Isolation and Degradation Activity of a TBTCl (Tributyltin Chloride) Resistant Bacteriain Gwangyang Bay
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Isolation and Degradation Activity of a TBTCl (Tributyltin Chloride) Resistant Bacteriain Gwangyang Bay
Jeong, Seong-Yun; Son, Hong-Joo; Jeoung, Nam-Ho;
  PDF(new window)
BACKGROUND: Tributyltin chloride is among the most toxic compounds known for aquatic ecosystems. Microorganisms are responsible for removal of TBTCl. Nevertheless, only a limited number of marine bacteria were investigated for biodegradation of TBTCl in Korea. METHODS AND RESULTS: The number of TBTCl resistant bacteria ranged from to cfu/mL in the seawater, and ranged from to cfu/g in the surface sediment, respectively. The morphological, physiological, and biochemical characteristics of TBTCl resistant bacteria were investigated by API 20NE and other tests. The most abundant species of TBTCl resistant bacteria were Vibrio spp. (19.2%), Bacillus spp. (16.2%), Aeromonas spp. (15.2%), and Pseudomonas spp. (13.1%), etc. Eleven TBTCl resistant isolates also had a resistance to heavy metals (Cd, Cu, Hg, and Zn). Among them, isolate T7 showing the strong TBTCl-resistance was selected. This isolate was identified as the genus Pantoea by 16S rRNA gene sequencing and designated as Pantoea sp. T7. In addition, this bacterium was cultivated up to the growth of 50.7% after 60 hrs at TBTCl concentration of . TBTCl-degrading activity of Pantoea sp. T7 was measured by GC-FPD analysis. As a result of biological TBTCl-degradation at TBTCl concentration of , TBTCl-removal efficiency of Pantoeasp. T7 was 62.7% after 40 hrs. CONCLUSION(S): These results suggest that Pantoea sp. T7 is potentially useful for the bioremediation of TBT contamination.
Gwangyang Bay;Pantoea sp. T7;TBTCl-degrading activity;Tributyltin Chloride;
 Cited by
은 나노 입자가 코팅된 인공경량골재의 생물오손 방지 특성,김성열;김유택;박용준;

한국결정성장학회지, 2015. vol.25. 5, pp.212-217 crossref(new window)
Anti-biofouling properties of silver nano-particle coated artificial light-weight aggregates, Journal of the Korean Crystal Growth and Crystal Technology, 2015, 25, 5, 212  crossref(new windwow)
Anderson, R.S., Brubacher, L.L., Calvo, L.M., Burreson, E.M., Unger, M.A., 1997. Effects of in vibrio exposure to tributyltin on generation of oxygen metabolites by oyster hemocytes,Environ. Res . 74(1), 84-90. crossref(new window)

Barug, D, 1981. Microbial degradation of bis (tributyltin) oxide,Chemosphere . 10(10), 1145-1154. crossref(new window)

Bernat, P.,Dlugonski, J., 2006. Acceleration of tributyltin chloride (TBT) degradation in liquid cultures of the filamentous fungus Cunninghamellaelegans, Chemosphere. 62, 3-8. crossref(new window)

Buck, J.D., Cleverdon, R.C., 1960. The spread plate as a method for enumeration of marine bacteria, Limnol.Oceanogr. 5, 75-80.

Canamas, T.P., Vinas, I.,Abadias, M., Usall, J., Torres, R., Teixido, N., 2009. Acid tolerance response induced in the biocontrol agent Pantoea agglomerans CPA-2 and effect on its survival ability in acidic environments,Microbiol. Res. 164, 438-450. crossref(new window)

Clark, E.A., Sterritt, R.M., Lester, J.N., 1988. The fate of tributyltin in the aquatic environment, Environ. Sci. Technol. 22(6), 600-604. crossref(new window)

Cruz, A., Caetano, T., Suzuki, S., Mendo, S., 2007. Aeromonasveronii , a tributyltin (TBT)-degrading bacterium isolated from an estuarine environment, Ria de Aveiro in Portugal,Mar. Environ. Res. 64, 639-650. crossref(new window)

Dunbar, J., Ticknor, L.O., Kuske, C.R., 2000. Assessment of microbial diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis, Appl. Environ. Microbiol.66, 2943-2950. crossref(new window)

Fukagawa, T., Suzuki, S., Fukunaga, K., Suzuki, T., Takama, K., 1992. Isolation and characterization of tributyltin chloride-resistant marine Vibrio,FEMS Microbial.lett. 93, 83-86. crossref(new window)

Fukagawa, T., Suzuki, S., 1994. Cloning of gene responsible for tributyltin chloride (TBTCl) resistance in TBTClresistant marine bacterium, Alteromonas sp. M-1, Bioch.Biophysi. Res. Com. 194(2), 733-740.

Gerhardt, P., Murray, R.G., Costilow, E.R.N., Nester, E.W., Wood, W.A., Krieg, N.R., Phillips, G.B., 1981. Manual of method for general bacteriology , pp. 135-154, 1st ed. American Society for Microbiology, Washington D.C., USA.

Han, G., Cooney, J.J., 1995. Effects of butyltins and inorganic tin on chemotaxis of aquatic bacteria,J. Ind. Microbial. 14, 293-299. crossref(new window)

Harino, H., O'Hara, S.C.M., Burt, G.R., Pope, N.D., Chesman, B.S., Langston, W.J., 2002. Butyltin and phenyltin compounds in eels (Anguilla anguilla ),J. Marine Biol. Assoc. UK. 82(5), 893-901. crossref(new window)

Hashimoto, S., Watanabe, M, Noda, Y., Hayashi, T., Kurita, Y.,Takasu, Y., Otsuki, A., 1998. Concentration and distribution of butyltin compounds in a heavy tanker route in the Strait of Malacca and in Tokyo bay,Marine Environ. Res. 45(2), 169-177. crossref(new window)

Kam, S.K., Kim, H.J., Lee, M,G., 2011. Distribution characteristics of organotin compounds in sediments inside Jeju harbor of Jeju Island,J. Environ. Sci. 20, 385-394. crossref(new window)

Kim, D.C., Kang, H.J., 1991.Suspended sediment budget in Gwangyang Bay through the Yeosu Sound,J. Korean Fish. Soc. 24(1), 31-38.

Kim, G.Y., Park, M.O., 2001. Evaluation of butyltin compounds and its distribution among seawater, sediment and biota from the Kwangyang Bay,J. Korean Fish. Soc. 34(4), 291-298.

Lee, J.R., 2000, Change of regional economic structure and industrial development of Kwangyang Bay area: 1987-1996,Korean Plan. Assoc. 35(2), 175-189.

MacFaddin, J.F., 1980. Biochemical tests for identification of medical bacteria , pp. 36-308, 2nd ed. Williams and Wilkins Co., Baltimore, USA.

Mailhot, G., Astruc, M., Bolte, M., 1999. Degradation of tributylin chloride in water photoinduced by iron (III),Appl. Organometal. Chem. 13, 53-61. crossref(new window)

Marszalek, D.S., Gerchakov, S.M.,Udey, L.R., 1979. Influence of substrate composition on marine microfouling,Appl. Environ. Microbiol. 38, 987-995.

McDonald, L., Trevors, J.T., 1988. Review of tin resistance, accumulation and transformations by microorganisms,Water Air Soil Pollut. 40. 215-221.

Pain, A., Cooney, J.J., 1998. Characterization of organotin-resistant bacteria from Boston harbor sediments,Arch. Environ. Contam.Toxicol. 35(3), 412-416. crossref(new window)

Park, Y.A., Lee, C.B., Choi, J.H., 1984. Sedimentary Environments of the Gwangyang Bay, Southern Coast of Korea,Korean Soc. Oceano. 19(1), 82-88.

Sambrook, J., Fritsch, E.F., Maniatis, T., 1989.Molecular cloning, a laboratory manual , pp. 25-28, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, N.Y., USA.

Shim, W.J., Oh, J.R., Kang, S.H., Shim, J.H., Lee, S.H., 2000.Tributyltin and triphenyltin residues in Pacific oyster (Crassostreagigas ) and rock shell (Thais clavigera ) from the Chinhae Bay System, Korea,J. Korean Soc. Oceanogr. 33(3), 90-99.

Smits, T.H.M., Rezzonico, F., Kamber, T., Goesmann, A., Ishimaru, C.A., Stockwell, V.O., Frey, J.E., Duffy, B., 2010.The genome sequence of the biocontrol agent Pantoea vagans strain C9-1,J. Bacteriol. 192, 6486-6487. crossref(new window)

Taga, N., 1968. Some ecological aspects of marine bacteria in the KuroShio current,Bull. Misaki. Mar. Biol. Inst. Kyoto Univ. 12, 65-76.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28, 2731-2739. crossref(new window)

Uchida, M., 1993. Inhibitory activity of organotin compounds against colony formation of estuarine bacteria,Nippon suisangakkaish. 59(12), 2037-2941.

Uchida, M., 1994.Tolerance of marine bacteria for organotin compounds (OTCs) in areas with or without OTC contamination,Fisher. Sci. 60(3), 267-270. crossref(new window)