Advanced SearchSearch Tips
Morphological Changes of Fungal Cell Wall and ABC Transporter as Resistance Responses of Rice Bakanae Disease Pathogen Fusarium fujikuroi CF337 to Prochloraz
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Morphological Changes of Fungal Cell Wall and ABC Transporter as Resistance Responses of Rice Bakanae Disease Pathogen Fusarium fujikuroi CF337 to Prochloraz
Yang, You-Ri; Lee, Si-Woo; Lee, Se-Won; Kim, In-Seon;
  PDF(new window)
BACKGROUND: The resistance of rice bakanae disease pathogens against the fungicide prochloraz has been reported. Understanding the resistance mechanisms is an important for better control of the pathogens. In the present study, we investigated the resistance mechanisms of Fusarium fujikuroi CF337 (CF337) against prochloraz. METHODS AND RESULTS: Morphological changes in the cell wall of CF337 grown in potato dextrose broth (PDB) with or without prochloraz was investigated by transmission electron microscopy. Growth inhibition of CF337 was examined in PDB containing prochloraz or an ABC transporter inhibitor or both of them. Cell wall thickness of CF337 grown in PDB with prochloraz was significantly increased from to . Significant inhibition in the growth of CF337 was observed in the presence of both prochloraz and the inhibitor, but no growth inhibition was observed in the presence of the inhibitor or prochloraz. Sequence analysis of ATP-binding cassette transporter (ABC) gene of CF337 showed 70 to 80% similarities to the genes of the pathogens resistant to other fungicides. CONCLUSION: Efflux transporter system and changes in cell wall thickness were suggested as resistance mechanisms of CF337 against prochloraz.
Conazoles;Demethylation inhibitor;Fungicide resistance;Prochloraz;Rice bakanae disease;
 Cited by
Albertson, G. D., Niimi, M., Cannon, R. D., Jenkinson, H. F., 1996. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance, Antimicrob. Agents Ch. 40, 2835-2841.

Delye, C., Laigret, F., Corio-Costet, M. F., 1997. A mutation in the 14 alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl. Environ. Microbiol. 63, 2966-2970.

Elsztein, C., de Lucena, R. M., de Morais, M. A., Jr., 2011. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1. BMC Mol. Biol. 12, 1-10. crossref(new window)

Hayashi, K., Schoonbeek, H., Waard, M. A. D.. 2002. Expression of the ABC transporter BcatrD from Botrytis cinerea reduces sensitivity to sterol demethylation inhibitor fungicides. Pestic. Biochem. Phys. 73, 110-121. crossref(new window)

Henry, M. J., Sisler, H. D., 1984. Effects of sterol biosynthesis-inhibiting (SBI) fungicides on cytochrome P-450 oxygenations in fungi. Pestic. Biochem. Phys. 22, 262-275. crossref(new window)

Kim, I. S., Foght, J. M., Gray, M. R., 2002. Selective transport and accumulation of alkanes by Rhodococcus ertythropolis S+14He. Biotechnol. Bioengineer. 80, 650-659. crossref(new window)

Kim, S. H., Park, M. R., Kim, Y. C., Lee, S. W., Choi, B. R., Lee, S. W., Kim, I. S., 2010. Degradation of prochloraz by rice Bakanae disease pathogen Fusarium fujikuroi with differing sensitivity: a possible explanation for resistance mechanism. J. Korean Soc. Appl. Biol. Chem. 53, 433-439. crossref(new window)

Kim, S. K., Kim, Y. C., Lee, S., Kim, J. C., Yun, M. Y., Kim, I. S. 2011. Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzue perscicae). J. Agric. Food Chem. 59, 934-938. crossref(new window)

Lee, Y. H., Kim, S. Y., Choi, H. W., Lee, M. J., Ra, D. S., Kim, I. S., Park, J. W., Lee, S. W., 2010. Fungicide resistance of Fusarium fujikuroi isolated in Korea. Korean J. Pestic. Sci. 14, 427-432.

Ma, Z., Proffer, T. J., Jacobs, J. L., Sundin, G. W., 2006. Overexpression of the 14alpha-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl. Environ. Microbiol. 72, 2581-2585. crossref(new window)

Ma, Z., Yoshimura, M. A., Michailides, T. J., 2003. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in california. Appl. Environ. Microbiol. 69, 7145-7152. crossref(new window)

Mellado, E., Garcia-Effron, G., Alcazar-Fuoli, L., Melchers, W. J., Verweij, P. E., Cuenca-Estrella, M., Rodriguez- Tudela, J. L., 2007. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob. Agents Ch. 51, 1897-1904. crossref(new window)

Milano, A., Pasca, M. R., Provvedi, R., Lucarelli, A. P., Manina, G., de Jesus Lopes Ribeiro, A. L., Manganelli, R., Riccardi, G., 2009. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system. Tuberculosis 89, 84-90. crossref(new window)

Moslem, M. A., Bahkali, A. H., Abd-Elsalam, K. A., Wit, P. J. G. M., 2010. An efficient method for DNA extraction from cladosporioid fungi. Genet. Mol. Res. 9, 2283-2291. crossref(new window)

Parkinson, T., Falconer, D. J., Hitchcock, C. A., 1995. Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata. Antimicrob. Agents Ch. 39, 1696-1699. crossref(new window)

Prudencio, C., Sansonetty, F., Sousa, M. J., Corte-Real, M., Leao, C., 2000. Rapid detection of efflux pumps and their relation with drug resistance in yeast cells. Cytometry. 39, 26-35. crossref(new window)

Sanglard, D., Ischer, F., Koymans, L., Bille, J., 1998. Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob. Agents Ch. 42, 241-253. crossref(new window)