JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Effects of Genetically Modified Crops on Soil Microbial Community
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Effects of Genetically Modified Crops on Soil Microbial Community
Lee, Ki-Jong; Oh, Sung-Dug; Sohn, Soo-In; Ryu, Tae-Hun; Park, Jong-Sug; Lee, Jang-Yong; Cho, Hyun-Suk; Ahn, Byung-Ohg;
  PDF(new window)
 Abstract
BACKGROUND: Genetically modified (GM) crops must receive relevant regulator`s authorization before they can be sold as seed or used food, feed and processing. Before approving any GM crop, the relevant government ministries are required to examine environmental risk assessment to make scientifically sound and socially acceptable decisions. But one of the least studied and understood areas in the environmental risk assessment of GM crops are their impact on soil microbial community. METHODS AND RESULTS: Recently, advanced methods have been developed to characterize the soil microbial community in various environments. In this study, the culture-dependent and culture-independent technical approaches for profiling soil microbial communities are summarized and their applicability to assess GM crops are discussed. CONCLUSION(S): We concluded that the effect of GM crops on soil microbial community need to be assessed on a case by case basis. The combination of culture-dependent and culture-independent method was necessary for reliable and detailed assessment of effect of GM crops on soil microbial community.
 Keywords
Environmental risk assessment;Genetically modified;Soil microbes;
 Language
Korean
 Cited by
1.
The GMO Industry: A Neglected Earthly Frontier, Journal of Hunger & Environmental Nutrition, 2016, 1  crossref(new windwow)
 References
1.
Ahrenholtz, I., Harms, K., de Vries, J., Wackernagel, W., 2000. Increased killing of Bacillus subtilis on the hair roots of transgenic T4 lysozyme-producing potatoes, Appl. Environ. Microb. 66, 1862-1865. crossref(new window)

2.
Angle, J. S., 1994. Release of Transgenic Plants-Biodiversity and Population-Level Considerations, Mol. Ecol. 3, 45-50.

3.
Barton, J. E., Dracup, M., 2000. Genetically modified crops and the environment, Agron. J. 92, 797-803. crossref(new window)

4.
Baumgarte, S., Tebbe, C. C., 2005. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere, Mol. Ecol. 14, 2539-2551. crossref(new window)

5.
Bruinsma, M., Kowalchuk, G. A., van Veen, J. A., 2003. Effects of genetically modified plants on microbial communities and processes in soil, Biol. Fert. Soils. 37, 329-337.

6.
Clausen, M., Krauter, R., Schachermayr, G., Potrykus, I., Sautter, C., 2000. Antifungal activity of a virally encoded gene in transgenic wheat, Nat. Biotech. 18, 446-449. crossref(new window)

7.
Daniell, H., Muthukumar, B., Lee, S. B., 2001. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection, Curr. Genet. 39, 109-116. crossref(new window)

8.
De Vries, J., Harms, K., Broer, I., Kriete, G., Mahn, A., Düring, K., Wackernagel, W., 1999. The bacteriolytic activity in transgenic potatoes expressing a chimeric T4 lysozyme gene and the effect of T4 lysozyme on soil-and phytopathogenic bacteria, Syst. Appl. Microbiol. 22, 280-286. crossref(new window)

9.
Di Giovanni, G. D., Watrud, L. S., Seidler, R. J., Widmer, F., 1999. Comparison of parental and pransgenic alfalfa rhizosphere bacterial communities using biolog GN metabolic fingerprinting and enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR), Microb. Ecol. 37, 129-139. crossref(new window)

10.
Donegan, K. K., Palm, C. J., Fieland, V. J., Porteous, L. A., Ganio, L. M., Schaller, D. L., Bucao, L. Q., Seidler, R. J., 1995. Changes in levels, species and DNA fingerprints of soil-microorganisms associated with cotton expressing the Bacillus thuringiensis Var. Kurstaki endotoxin, Appl. Soil. Ecol. 2, 111-124. crossref(new window)

11.
Donegan, K. K., Seidler, R. J., Fieland, V. J., Schaller, D. L., Palm, C. J., Ganio, L. M., Cardwell, D. M., Steinberger, Y., 1997. Decomposition of genetically engineered tobacco under field conditions: Persistence of the proteinase inhibitor I product and effects on soil microbial respiration and protozoa, nematode and microarthropod populations, J. Appl. Ecol. 34, 767-777. crossref(new window)

12.
Dunfield, K. E., Germida, J. J., 2001. Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus, Fems Microbiol. Ecol. 38, 1-9. crossref(new window)

13.
Filion, M., 2008. Do transgenic plants affect rhizobacteria populations?, Microb. Biotechnol. 1, 463-475. crossref(new window)

14.
Germida, J. J., Dunfield, K. E., 2004. Impact of genetically modified crops on soil-and plantassociated microbial communities, J. Environ. Qual. 33, 806-815. crossref(new window)

15.
Griffiths, B. S., Geoghegan, I. E., Robertson, W. M., 2000. Testing genetically engineered potato, producing the lectins GNA and Con A, on non-target soil organisms and processes, J. Appl. Ecol. 37, 159-170.

16.
Heuer, H., Kroppenstedt, R. M., Lottmann, J., Berg, G., Smalla, K., 2002. Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere relative to communities are negligible natural factors, Appl. Environ. Microb. 68, 1325-1335. crossref(new window)

17.
Heuer, H., Smalla, K., 1999. Bacterial phyllosphere communities of Solanum tuberosum L. and T4-lysozyme-producing transgenic variants, Fems Microbiol Ecol 28, 357-371. crossref(new window)

18.
James, C., 2011. Global Status of Commercialized Biotech/GM Crops: 2011 , No. 43., ISAAA, Ithaca, NY.

19.
Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Khironomos, J. N., Lee, H., Trevors, J. T., 2004. Methods of studying soil microbial diversity, J Microbiol Meth 58, 169-188. crossref(new window)

20.
Kremer, R. J., Means, N. E., Kim, S. J., 2005. Glyphosate affects soybean root exudation and rhizosphere micro-organisms, Int J Environ an Ch 85, 1165-1174. crossref(new window)

21.
Lee EH, Park HJ, Jo YS, Ryu HW, KS, C., 2010. Application of methodology for microbial community analysis to gas-phase biofilters, Korean J. Chem. Eng. 48, 147-156.

22.
Libiakova, G., Jorgensen, B., Palmgren, G., Ulvskov, P., Johansen, E., 2001. Efficacy of an introncontaining kanamycin resistance gene as a selectable marker in plant transformation, Plant Cell Rep 20, 610-615. crossref(new window)

23.
Liu, B., Zeng, Q., Yan, F., Xu, H., Xu, C., 2005. Effects of transgenic plants on soil microorganisms, Plant Soil 271, 1-13. crossref(new window)

24.
Lorenz, M. G., Blum, S. A. E., Wackernagel, W., 1997. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils, Syst Appl Microbiol 20, 513-521. crossref(new window)

25.
Losey, J. E., Rayor, L. S., Carter, M. E., 1999. Transgenic pollen harms monarch larvae, Nature 399, 214-214.

26.
Lottmann, J., Berg, G., 2001. Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and non-transgenic potato plants, Microbiol Res 156, 75-82. crossref(new window)

27.
Lukow, T., Dunfield, P. F., Liesack, W., 2000. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants, Fems Microbiol Ecol 32, 241-247. crossref(new window)

28.
Lynch, J. M., Benedetti, A., Insam, H., Nuti, M. P., Smalla, K., Torsvik, V., Nannipieri, P., 2004. Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms, Biol Fert Soils 40, 363-385. crossref(new window)

29.
Maizel, A., Weigel, D., 2004. Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana , Plant J 38, 164-171. crossref(new window)

30.
Marschner, P., Crowley, D., Yang, C. H., 2004. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type, Plant Soil 261, 199-208. crossref(new window)

31.
Neal, J. L., Atkinson, T. G., Larson, R. I., 1970. Changes in the rhizosphere microflora of spring wheat induced by disomic substitution of a chromosome, Can J Microbiol 16, 153-158. crossref(new window)

32.
Nielsen, K. M., van Elsas, J. D., Smalla, K., 2000. Transformation of Acinetobacter sp strain BD413 (pFG4 Delta nptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants, Appl Environ Microb 66, 1237-1242. crossref(new window)

33.
Nocker, A., Burr, M., Camper, A. K., 2007. Genotypic microbial community profiling: A critical technical review, Microbial Ecology 54, 276-289. crossref(new window)

34.
Oger, P., Petit, A., Dessaux, Y., 1997. Genetically engineered plants producing opines alter their biological environment, Nat Biotechnol 15, 369-372. crossref(new window)

35.
Paget, E., Lebrun, M., Freyssinet, G., Simonet, P., 1998. The fate of recombinant plant DNA in soil, Eur J Soil Biol 34, 81-88. crossref(new window)

36.
Rodenburg, K. W., Degroot, M. J. A., Schilperoort, R. A., Hooykaas, P. J. J., 1989. Single-Stranded-DNA Used as an Efficient New Vehicle for Transformation of Plant-Protoplasts, Plant Mol Biol 13, 711-719. crossref(new window)

37.
Saxena, D., Flores, S., Stotzky, G., 1999. Transgenic plants-Insecticidal toxin in root exudates from Bt corn, Nature 402, 480-480.

38.
Saxena, D., Stotzky, G., 2000. Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ, Fems Microbiol Ecol 33, 35-39. crossref(new window)

39.
Schmalenberger, A., Tebbe, C. C., 2002. Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays ) and comparison to its non-transgenic cultivar Bosphore, Fems Microbiol Ecol 40, 29-37. crossref(new window)

40.
Siciliano, S. D., Germida, J. J., 1999. Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland, Fems Microbiol Ecol 29, 263-272. crossref(new window)

41.
Siciliano, S. D., Theoret, C. M., de Freitas, J. R., Hucl, P. J., Germida, J. J., 1998. Differences in the microbial communities associated with the roots of different cultivars of canola and wheat, Can J Microbiol 44, 844-851. crossref(new window)

42.
Sims, S. R., Ream, J. E., 1997. Soil inactivation of the Bacillus thuringiensis subsp kurstaki CryIIA insecticidal protein within transgenic cotton tissue: Laboratory microcosm and field studies, J Agr Food Chem 45, 1502-1505. crossref(new window)

43.
Smalla, K., Gebhard, F., 1999. Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer, Fems Microbiol Ecol 28, 261-272. crossref(new window)

44.
Tilman, D., Downing, J. A., 1994. Biodiversity and stability in grasslands, Nature 367, 363-365. crossref(new window)

45.
Widmer, F., Seidler, R. J., Donegan, K. K., Reed, G. L., 1997. Quantification of transgenic plant marker gene persistence in the field, Mol Ecol 6, 1-7. crossref(new window)