Advanced SearchSearch Tips
Comparison of Single Extractions for Evaluation of Heavy Metal Phytoavailability in Soil
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Single Extractions for Evaluation of Heavy Metal Phytoavailability in Soil
Seo, Byoung-Hwan; Lim, Ga-Hee; Kim, Kye-Hoon; Kim, Jang-Eok; Hur, Jang-Hyun; Kim, Won-Il; Kim, Kwon-Rae;
  PDF(new window)
BACKGROUND: Consensus of heavy metal phytoavailability in soils needs to be introduced for soil management protocols in relation to safer food production in the contaminated agricultural soils. For this, setting up the method for evaluation of metal phytoavailability in soil is an essential prerequisite. METHODS AND RESULTS: The current study was carried to select a proper single extraction method for determination of phytoavailable metal concentration in soil. Two extraction methods were examined including 1 M extraction and 0.01 M extraction methods using 142 soil samples collected from the agricultural soils nearby abandoned mining area in Korea. Corelation analysis was conducted between phytoavailable metal concentrations and soil properties potentially influencing on the metal phytoavailability. Both methods showed similar significance (p<0.001) in correlation with soil properties such as soil pH. However, higher correlation coefficients between phytoavailable metal concentrations and soil properties were observed when used extraction rather than using extraction. CONCLUSION(S): It appeared that 0.01 M extraction was better option for determination of phytoavailable metals in soils and further study to test the efficiency of this method is required in combination with plant uptake.
extraction;Mobility; extraction;Solubility;
 Cited by
중금속 오염 농경지의 식물유효태 예측 모델식 개발: 우리나라 폐광산 인근 농경지 토양 사례 연구,임가희;김계훈;서병환;김권래;

한국환경농학회지, 2014. vol.33. 4, pp.271-281 crossref(new window)
Distribution of Phytoavailable Heavy Metals in the Korean Agricultural Soils Affected by the Abandoned Mining Sites and Soil Properties Influencing on the Phytoavailable Metal Pools,;;;;

한국토양비료학회지, 2014. vol.47. 3, pp.191-198 crossref(new window)
Comparison of Various Single Chemical Extraction Methods for Predicting the Bioavailability of Arsenic in Paddy Soils,;;;;;;;;;

한국토양비료학회지, 2014. vol.47. 6, pp.464-472 crossref(new window)
Comparing Bioavailability of Cadmium and Arsenic in Agricultural Soil Under Varied pH Condition,;;;;;;;

한국토양비료학회지, 2015. vol.48. 1, pp.57-63 crossref(new window)
석회석을 이용하여 안정화한 중금속오염 논토양에서 토양과 식물체(벼) 간의 중금속 전이특성,고일하;김의영;권요셉;지원현;주완호;김진홍;신복수;장윤영;

한국지하수토양환경학회지:지하수토양환경, 2015. vol.20. 4, pp.90-103 crossref(new window)
Partitioning of Heavy Metals between Rice Plant and Limestone-stabilized Paddy Soil Contaminated with Heavy Metals, Journal of Soil and Groundwater Environment, 2015, 20, 4, 90  crossref(new windwow)
Transfer functions for estimating phytoavailable Cd and Pb in metal contaminated paddy and upland soils: Implications for phytoavailability based land management, Geoderma, 2016, 270, 89  crossref(new windwow)
Comparison of Various Single Chemical Extraction Methods for Predicting the Bioavailability of Arsenic in Paddy Soils, Korean Journal of Soil Science and Fertilizer, 2014, 47, 6, 464  crossref(new windwow)
Distribution of Phytoavailable Heavy Metals in the Korean Agricultural Soils Affected by the Abandoned Mining Sites and Soil Properties Influencing on the Phytoavailable Metal Pools, Korean Journal of Soil Science and Fertilizer, 2014, 47, 3, 191  crossref(new windwow)
Comparing Bioavailability of Cadmium and Arsenic in Agricultural Soil Under Varied pH Condition, Korean Journal of Soil Science and Fertilizer, 2015, 48, 1, 57  crossref(new windwow)
Transfer Function for Phytoavailable Heavy Metals in Contaminated Agricultural Soils: The Case of The Korean Agricultural Soils Affected by The Abandoned Mining Sites, Korean Journal of Environmental Agriculture, 2014, 33, 4, 271  crossref(new windwow)
Alloway, B.J., 1995. Heavy metals in soils. Blackie Academic & Professional, Glasgow, UK.

Bermond, A., Yousfi, I., Ghestem, J.P., 1998. Kinetic approach to the chemical speciation of trace metals in soils, Analyst 123, 785-789. crossref(new window)

Bingham, F.T., Sposito, G., Strong, J.E., 1984. The effect of chloride on the availability of cadmium. J. Environ. Qual. 13, 71-74.

Bo, V.S., 1986. Verordnung uber Schadstoffgehalt im Boden, Swiss Ordinance on Pollutants in Soils Nr.814.12, Publ. Eidg. Drucksachen und Materialzentrale [EDMZ], 3000 Bern, Switzerland, p. 1.

Chen, Y., Shen, Z., Li, X., 2004. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals, Applied Geochem. 19(10), 1553-1565.

DIN (Deutsches Institut fur Normung), 1995. Soil Quality Extraction of Trace Elements with Ammonium Nitrate Solution. DIN 19730. Beuth Verlag, Berlin.

Feng, M.H., Shan, X.Q., Zhang, S., Wen, B., 2005. A comparison of the rhizosphere-based method with DTPA, EDTA, $CaCl_2$, and $NaNO_3$ extraction methods for prediction of bioavailability of metals in soil to barley, Environ. Pollut. 137, 231-240. crossref(new window)

Geebelen, W., Vangronsveld, J., Adriano, D.C., Carleer, R., Clijsters, H., 2002. Amendment-induced immobilization of lead in a lead-spiked soil: evidence from phytotoxicity studies, Water Air Soil Pollut. 140, 261-277. crossref(new window)

Hammer, D., Keller, A., 2002. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants, J. Environ. Qual. 31, 1561-1569. crossref(new window)

Heemsbergen, D.A., Warne, M.S.J., Broos, K., Bell, M., Nash, D., McLaughlin, M., Whatmuff, M., Barry, G. Pritchard, D., Penney, N., 2009. Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. Sci. Total Environ. 407, 2546-2556. crossref(new window)

Houba, V.J.G., Novozamsky, I., Lexmond, T.M., Van der Lee, J.J., 1990. Applicability of 0.01 M $CaCl_2$ as a single extraction solution for the assessment of the nutrient status of soils an other diagnostic purposes, Commun. Soil. Sci. Plant Anal. 21, 2281-2290. crossref(new window)

Houba, V.J.G., Lexmond, T.M., Novozamsky, I., Van der Lee, J.J., 1996. State of the art and future developments in soil analysis for bioavailability assessment, Sci. Total Environ. 178, 21-27. crossref(new window)

Jackson, A.P., Alloway, B.J., 1991. The bioavailability of cadmium to lettuces and cabbages in soils previously treated with sewage sludges, Plant Soil 132, 179-186.

Kang, S.S., Roh, A.S., Choi, S.C., Kim, Y.S., Kim, H.J., Choi, M.T., Ahn, B.K., Kim, H.W., Kim, H.K., Park, J.H., Lee, Y.H., Yang, S.H., Ryu, J.S., Jang, Y.S., Kim, M.S., Son, Y.K., Lee, C.H., Ha, S.G., Lee, D.B., Kim, Y.H., 2012. Status and changes in chemical properties of paddy soil in Korea. Korean J. Soil Sci. Fert. 45(6), 968-972. crossref(new window)

Kim, K.R., Kim, J.G., Park, J.S., Kim, M.S., Owens, G., Youn, G.H., Lee, J.S., 2012. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production, J. Environ. Manage. 102, 88-95. crossref(new window)

Kim, K.R., Owens, G., Naidu, R., Kim K.H., 2007. Assessment Techniques of Heavy Metal Bioavailability in Soil - A critical review, Korean J. Soil Sci. Fert. 40(4), 311-325.

Kim, K.R., Owens, G., Naidu, R., 2009. Heavy metal distribution, bioaccessibility and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia, Aust. J. Soil Res. 47(2), 166-176.

Lebourg, A., Sterckeman, T., Ciesielski, H., Proix, N., 1998. Trace metal speciation in three unbuffered salt solutions used to assess their bioavailability in soil, J. Environ. Qual. 27, 584-590.

Lock, K., Janssen, C.R., 2003. Influence of ageing on zinc bioavailability in soils. Environ. Pollut. 126, 371-374. crossref(new window)

McLaughlin, M.J., Maier, N.A., Correll, R.L., Smart, M.K., Sparrow, L.A., McKay, A., 1999. Prediction of cadmium concentrations in potato tubers (Solanum tuberosum L.) by pre-plant soil and irrigation water analyses, Aust. J. soil Res. 37, 191-207. crossref(new window)

Miller, W.P., Miller, M., 1987. A micro pipette method for soil mechanical analysis, Commun. Soil Sci. Plant Anal. 18, 1-15. crossref(new window)

NAAS, 2010. Analysis methods for soil chemical properties. NAAS. Suwon. Publication No. 11-1390802-000282-01.

Naidu, R., Kookana, R.S., Sumner, M.E., Harter, R.D., Tiller, K.G., 1997. Cadmium sorption and transport in variable charge soils: a review. J. Environ. Qual. 26, 602-607.

Naidu, R., Megharaj, M., Owens, G., 2003a. Recyclable urban and industrial waste - benefits and problems in agricultural use, in: Schjonning, P., Emholt, S., Christensen, B.T. (Eds), Managing soil quality-challenges in modern agriculture, CABI Publishing, CABI International: Wallingford, UK.

Naidu, R., Rogers, S., Gupta, V.V.S.R., Kookana, R.S., Bolan, N.S., Adriano, D.C., 2003b. Bioavailability of metals in the soil plant environment and its potential role in risk assessment, in: Naidudu, R., Rogers, S., Gupta, V.V.S.R., Kookana, R.S., Bolan, N.S., Adriano, D.C. (Eds), Bioavailability, toxicity and risk relationships in ecosystems, Science Publishers Inc.: New Hampshire.

Nolan, A,L., Zhang, H., McLaughlin, M.J., 2005. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques, J. Environ. Qual. 34, 496-507. crossref(new window)

Pruess, A., 1997. Action values for mobile ($NH_4NO_3$) trace elements in soils based on the German national standard DIN 19730, in: Prost, R,, (Ed), Contaminated soils. Proc. 3rd Int. Conf. on the Biogeochemistry of Trace Elements. Paris: INRA. p 415-423.

Pueyo, M., Lopez-Sanchez, J.F., Rauret, G., 2004. Assessment of $CaCl_2$, $NaNO_3$ and $NH_4NO_3$ extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils, Anal. Chim. Acta 504, 217-226. crossref(new window)

Ruby, M.W., Davis, A., Link, T.E., Schoof, R., Chaney, R.L., Freeman, G.B., Bergstrom, P., 1993. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead, Environ. Sci. Technol. 27(13), 2870-2877. crossref(new window)

Salazar, M.J., Rodriguez, J.H. Nieto, G.L., Pignata, M.L., 2012. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J. Hazard. Mater. 233-234, 244-253. crossref(new window)

Schwertmann, U., 1964. The differentiation of iron oxide in soils by a photochemical extraction with acid ammonium oxalate, Z. Pflanzenernahr Dung. Bodenkunde. 105, 194-201. crossref(new window)

Schwertmann, U., 1973. Use of oxalate for Fe extraction from soils, Can. J. Soil Sci. 53, 244-246. crossref(new window)

Tack, F.M.G., Van Ranst, E., Lievens, C., Vandenberghe, R.E., 2006. Soil solution Cd, Cu and Zn concentrations as affected by short-time drying or wetting: The role of hydrous oxides of Fe and Mn. Geoderma. 137(1-2), 83-89. crossref(new window)

Tessier, A., Campbell, P.G., Bisson, M., 1979. Sequential extraction procedures for the specification of particulate trace metals. Anal.Chem. 5, 844-855.

Vig, K., Megharaj, M., Sethunathan, N., Naidu, R., 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv. Environ. Res. 8, 121-135. crossref(new window)

Wang, Z., Shan, X.Q., Zhang, S., 2002. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils, Chemosphere 46(8), 1163-1171. crossref(new window)

Wu, L., Tan, C., Liu, L., Zhu, P., Peng, C., Luo, Y., Christie, P., 2012. Cadmium bioavailability in surface soils receiving long-term applications of inorganic fertilizers and pig manure, Geoderma. 173-174, 224-230. crossref(new window)

Yoon, J.K., Kim, D.H., Kim, T.S., Park, J.G., Chung, I.R., Kim, J.H., Kim, H., 2009. Evaluation on Natural Background of the Soil Heavy Metals in Korea, J. Soil & Groundwater Env. 14(3), 32-39.

Zhu, B., Alva, A.K., 1993. Distribution of trace metals in some sandy soils under citrus production, Soil Sci. Soc. Am. J. 57, 350-355. crossref(new window)