Advanced SearchSearch Tips
Effects of Compost Application and Plastic Mulching on Soil Carbon Sequestration in Upland Soil
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Compost Application and Plastic Mulching on Soil Carbon Sequestration in Upland Soil
Kang, Jum-Soon; Suh, Jeong-Min; Shin, Hyun-Moo; Cho, Jae-Hwan; Hong, Chang-Oh;
  PDF(new window)
BACKGROUND: In most studies, soil carbon sequestration has been evaluated simply with change of soil organic carbon content. So far, information regarding stability of soil organic carbon is limited. METHODS AND RESULTS: This study was conducted to determine changes in soil organic carbon (SOC) content and stability of carbon in response to compost application rates and plastic mulching treatment during the hot pepper growing season. Under the pot experiment condition, compost was mixed with an arable soil at rates corresponding to 0, 10, 20, and 40 Mg/ha. To determine effects of plastic mulching on soil carbon sequestration, plastic mulching and no mulching treatments were set up in soils amended with the application rate of 20 Mg/ha. The SOC content did not significantly increase with application of compost and plastic mulching at harvest time. No significant changes in bulk density with compost application and plastic mulching was found. These might result from short duration of experiment. While hot water extractable organic carbon content significantly decreased with compost application and plastic mulching, humic substances increased. Belowground biomass of hot pepper was biggest at the recommended application rate (20 Mg/ha) of compost. CONCLUSION: From the above results, continuous application of compost at the recommended application rate could improve increase in SOC content and stability of carbon in long term aspect.
Compost;Hot pepper;Mulching;Soil carbon sequestration;
 Cited by
Blake, G.R., Hartge, K.H., 1986. Bulk density, Methods of Soil Analysis, Part 1, pp. 363-376, Soil Sci. Soc. Am., Madison, WI, USA.

Bremner, J.M., 1965. Inorganic forms of nitrogen, in: Black, C.A., et al. (Eds), Methods of Soil Analysis. Part 2, Agron. Monogr. 9. ASA., Madison, WI, USA, pp. 1179-1237.

Cambardella, C.A., Elliott, E.T., 1993a. Methods for physical separation and characterization of soil organic matter fractions, Geoderma 56, 449-457. crossref(new window)

Cambardella, C.A., Elliott, E.T., 1993b. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils, Soil Science Society of America Journal 57, 1071-1076. crossref(new window)

Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S., Fangmeier, A., Kuzyakov, Y., 2009. Stimulation of microbial extracellular enzyme activities by elevated $CO_2$ depends on aggregate size, Global Change Biology 15, 1603-1614. crossref(new window)

Elliott, E.T., 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils, Soil Science Society of America Journal 50, 627-633. crossref(new window)

Gajri, P.R., Arora, V.K., Chaudhary, M.R., 1994. Maize growth, response to deep tillage, straw mulching and farmyard manure in coarse textured soils of N.W. India. Soil Use and Management 10, 15-20. crossref(new window)

Glab, T., Kulig, B., 2008. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum), Soil & Tillage Research 99, 169-178. crossref(new window)

Intergovernmental Panel on Climate Change (IPCC), 2007. Fourth Assessment Report (AR4).

Janos, P., 2003. Separation methods in the chemistry of humic substances, Journal of Chromatography A 983, 1-18. crossref(new window)

Jastrow, J.D., 1996. Soil aggregate formation and the accrual of particulate and mineral associated organic matter, Soil Biology and Biochemistry 28, 656-676.

Lal, R., Kimble, J.M., Follet, R., 1997. Land use and soil carbon pools in terrestrial ecosystems, in: Lal, R., Kimble, J.M., Follet, R. (Eds), Management of Carbon Sequestration in Soils, CRC Press, New York, USA.

Lal, R., 2000. Erosion effects on agronomic productivity, in: Laflen, J.M., Tian, J., Huang., C.H. (Eds), Soil Erosion and Dryland Farming, CRC Press, Boca Raton, FL, USA, pp. 229-246.

Lal, R., 2007. Carbon management in agricultural soils, Mitigation and Adaptation Strategies for Global Change 12, 303-322. crossref(new window)

Lee, C.H., Jung, K.Y., Kang, S.S., Kim, M.S., Kim, Y.H., Kim, P.J., 2013. Effect of long-term fertilization on soil carbon and nitrogen pools in paddy soil, Korean J. Soil Sci. Fert. 46, 216-222. crossref(new window)

Lee, D.K., Owens, V.N., Doolittle, J.J., 2007. Switchgrass and soil carbon sequestration response to ammonium nitrate, manure, and harvest frequency on conservation reserve program land, Agronomy Journal 99, 462-468. crossref(new window)

Mukherjee M., 2008. Compost can turn agricultural soils into a carbon sink, thus protecting against climate change, Special issue of Waste Management and Research

Nieder, R., Benbi, D.K., 2008. Carbon and Nitrogen in the Terrestrial Environment, p. 430, Springer, USA.

Piccolo, A., 1996. Humus and soil conservation, in:Piccolo, A. (Ed), Humic Substances in Terrestrial Ecosystems, Elsevier, Amsterdam, Netherlands, pp. 225-264.

Piccolo, A., Spaccini, R., Haberhauer, G., Gerzabek, M.H., 1999. Increased sequestration of organic carbon in soil by hydrophobic protection, Naturwissenschaften 86, 496-499. crossref(new window)

Plante, A.F., Fernandez, J.M., Haddix, M.L., Steinweg, J.M., Conant R.T., 2011. Biological, chemical and thermal indices of soil organic matter stability in four grassland soils, Soil Biology & Biochemistry, 43, 1051-1058 crossref(new window)

Puget, P., Chenu, C., Balesdent, J., 1995. Total and young organic matter distributions in aggregates of silty cultivated soils, European Journal of Soil Science 46, 449-459. crossref(new window)

Rasool, R., Kukal, S.S., Hira, G.S., 2008. Soil organic carbon and physical properties as affected by longterm application of FYM and inorganic fertilizers in maize-wheat system, Soil and Tillage Research 101, 31-36. crossref(new window)

Richter, D.D., Callaham, M.A., Powlson, D.S., Smith, P., 2007. Long-term soil experiments: keys to managing earth's rapidly changing ecosystems, Soil Sci. Soc. Am. J. 71, 266-279. crossref(new window)

SAS Institute, 2006. SAS user's guide: statistics SAS institure, Cary, NC.

Schlesinger, W.H., 2000. Carbon sequestration in soils:Some cautions amidst optimism, Agriculture, Ecosystems and Environment 82, 121-127. crossref(new window)

Six, J., Elliott, E.T., Paustian, K., 1999. Aggregate and soil organic matter dynamics under conventional and no-tillage systems, Soil Science Society of America Journal 63, 1350-1358. crossref(new window)

Six, J., Paustian, K., Elliott, E.T., Combrick, C., 2000. Soil structure and organic matter. I. Distribution of aggregatesize classes and aggregate-associated carbon, Soil Science Society of America Journal 64, 681-689. crossref(new window)

Spaccini, R., Piccolo, A., Haberhauer, G., Gerzabek, M.H., 2000a. Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by 13C distribution and CPMAS-NMR spectra, Eur. J. Soil Sci. 51, 583-594. crossref(new window)

Spaccini, R., Conte, P., Zena, A., Piccolo, A., 2000b. Carbohydrates distribution in size-aggregates of three European soils under different climate, Fresen. Environ. Bull. 9, 468-476.

Sparling, G., Vojvodic-Vukovic, M., Schipper, L.A., 1998. Hot-water- soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C, Soil Biology & Biochemistry 30, 1469-1472. crossref(new window)