JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Algicidal Activity of Arthrobacter sp. NH-3 and its Algicide against Alexandrium catenella and other Harmful Algal Bloom Species
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Algicidal Activity of Arthrobacter sp. NH-3 and its Algicide against Alexandrium catenella and other Harmful Algal Bloom Species
Jeong, Seong-Yun; Jeoung, Nam Ho;
  PDF(new window)
 Abstract
BACKGROUND: The aim of this study was to isolate and identify algicidal bacterium that tends to kill the toxic dinoflagellate Alexandrium catenella, and to determine the algicidal activity and algicidal range of algicide. METHODS AND RESULTS: Among of algicidal bacteria isolated in this study, NH-3 isolate was the strongest algicidal activity against A. catenella. NH-3 isolate was identified on the basis of biochemical characteristics and analysis of 16S rRNA gene sequences. The NH-3 isolate showed over 99% homology with Arthrobacter oxydans, and was designated as Arthrobacter sp. NH-3. The optimal culture conditions were , initial pH 7.0, and 2.0% (w/v) NaCl concentration. The algicidal activity of Arthrobacter sp. NH-3 was significantly increased to maximum value in the late of logarithmic phase. Arthrobacter sp. NH-3 showed algicidal activity through indirect attack, which excreted active substance into the culture filtrate. When 10% culture filtrate of NH-3 was applied to A. catenella, 100% of algal cells were destroyed within 30 h. In addition, the algicidal activities were increased in dose and time dependent manners. The pure algicide was isolated from the ethyl acetate extract of the culture filtrate of NH-3 by using silica gel column chromatography and high performance liquid chromatography (HPLC). We investigated the algicidal activity of this algicide on the growth of harmful algal bloom (HAB) species, including A. catenella. As a result, it showed algicidal activity against several HAB species at a concentration of and had a relatively wide host range. CONCLUSION: Taken together, our results suggest that Arthrobacter sp. NH-3 and its algicide could be a candidate for controlling of toxic and harmful algal blooms.
 Keywords
Alexandrium catenella;Algicidal activity;Algicide;Arthrobacter sp. NH-3;Harmful algal bloom species;
 Language
Korean
 Cited by
 References
1.
Ahn, C. Y., Joung, S. H., Jeon, J. W., Kim, H. S., Yoon, B. D., & Oh, H. M. (2003). Selective control of cyanobacteria by surfactin-containing culture broth of Bacillus subtilis C1. Biotechnology Letters, 25(14), 1137-1142. crossref(new window)

2.
Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E., & Montresor, M. (2012). The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae, 14, 10-35. crossref(new window)

3.
Bravo, V. M., Maso, M., Figueroa, R. I., & Ramilo, I. (2008). Alexandrium catenella and Alexandrium minutum blooms in the Mediterranean Sea: toward the identification of ecological niches. Harmful Algae, 7(4), 515-522. crossref(new window)

4.
Cottrell, M. T., & Suttle, C. A. (1993). Production of axenic cultures of Micromonas pusilla (Prasinophyceae) using antibiotics. Journal of Phycology, 29(3), 385-387. crossref(new window)

5.
Doucette, G. J., McGovern, E. R, & Babinchak, J. A. (1999). Algicidal bacteria active against Gymnodinium breve (Dinophyceae), I. Bacterial isolation and characterization of killing activity. Journal of Phycology, 35(6), 1447-1454. crossref(new window)

6.
Droop, M. R. (1967). A procedure for routine purification of algae cultures with antibiotics. British Phycological Bulletin, 3(2), 295-297. crossref(new window)

7.
Dunbar, J., Ticknor, L. O., & Kuske, C. R. (2000). Assessment of microbial diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Applied and Environmental Microbiology, 66(7), 2943-2950. crossref(new window)

8.
Fontana, D. A., & Haug, A. (1982). Effects of sodium chloride of the plasma membrane of halotolerant Dunaliella primoecta : an electron spin resonance study. Archives of Microbiology, 131(3), 184-190. crossref(new window)

9.
Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R., & Phillips, G. B. (1981). Manual of method for general bacteriology, pp. 135-154, 1st ed. American Society for Microbiology, Washington D.C., USA.

10.
Glibert, P. M., Anderson, D. M., Gentien, P., Graneli, E., & Sellner, K. G. (2005). The global complex phenomena of Harmful Algal Blooms. Oceanography, 18(2), 136-147.

11.
Guillard, R. R. L., & Ryther, J. H. (1962). Studies of marine planktonic diatoms. 1. Cyclotella nana (HUSTEDT) and Detonula confervacea (CLEVE) GRAN. Canadian Journal of Microbiology, 8(2), 229-239. crossref(new window)

12.
Imai, I., Ishida, Y., & Hata, Y. (1993). Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan. Marine Biology, 116(4), 527-532. crossref(new window)

13.
Imai, I., Ishida, Y., Sakaguichi, K., & Hata, Y. (1995). Algicidal marine bacteria isolated from northern Hiroshima Bay, Japan. Fisheries Science, 61(4), 628-636.

14.
Imamura, N., Motoike, I., Noda, M., Adachi, K., Konno, A., & Fukami, H. (2000). Argimicin A, a novel anticyanobacterial compound produced by an algae-lysing bacterium. Journal of Antibiotics, 53(11), 1317-1319. crossref(new window)

15.
Jeong, S. Y., Park, Y. T., & Lee, W. J. (2000). Isolation of marine bacteria killing red tide microalgae, III. Algicidal effects of marine bacterium, Micrococcus sp. LG-5 against the harmful dinoflagellate, Cochlodinium polykrikoides. Journal of the Korean Fisheries Society, 33(4), 331-338.

16.
Jeong S. Y., Ishida, K., Ito, Y., Okada, S., & Murakami, M. (2003). Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedron Letters, 44(43), 8005-8007. crossref(new window)

17.
Jeoung, N. H., Son, H. J., & Jeong, S. Y. (2012). The algicidal activity of Pseudoalteromonas sp. NH-12 against the toxic dinoflagellate Alexandrium catenella. Korean Journal of Environmental Agriculture, 31(2), 175-184. crossref(new window)

18.
Kamikawa, R., Nagai, S., Hosoi-Tanabe, S., Itakura, S., Yamaguchi, M., Uchida, Y., Baba, T., & Sako, Y. (2007). Application of real-time PCR assay for detection and quantification of Alexandrium tamarense and Alexandrium catenella cysts from marine sediments. Harmful Algae, 6(3), 413-420. crossref(new window)

19.
Kim, C. H. (1995). Paralytic shellfish toxin profiles of dinoflagellate Alexandrium species isolated from benthic cysts in Jinhae Bay, Korea. Journal of the Korean Fisheries Society, 28(3), 364-372.

20.
Kim, H. G. (1997). Recent harmful algal blooms and mitigation strategies in Korea. Ocean and Polar Research, 19(2), 185-192.

21.
Kim, M. C., Yu, H. S., Ok, M. S., Kim, C. H., & Chang, D. S. (1999). The activities and characteristics of algicidal bacteria in Chindong Bay. Journal of the Korean Fisheries Society, 32(3), 359-367.

22.
Kim, K. Y., & Kim, C. H. (2004). A molecular phylogenetic study on Korean Alexandrium catenella and A. tamarense isolates (Dinophyceae) based on the partial LSU rDNA sequence data. Journal of the Korean Society of Oceanography, 39(3), 163-171.

23.
Kim, Y. S., Jeong, S. Y., Lee, S. J., & Lee, W. J. (2009). Isolation and characteristics of Brachybacterium sp. SY-97 killing the harmful dinoflagellate Cochlodinium polykrikoides. Journal of Environmental Science International, 18(4), 435-443. crossref(new window)

24.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. crossref(new window)

25.
Lee, S. O., Kato, J., Takiguchi, N., Kuroda, A., Ikeda, T., Mitsutani, A., & Ohtake, H. (2000). Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Applied and Environmental Microbiology, 66(10), 4334-4339. crossref(new window)

26.
Lee, H. O., Lee, N. W., Katano, T., & Han, M. S. (2006). Growth characteristics for toxic marine dinoflagellate Alexandrium catenella isolated from Jinhae Bay, Korea. Korean Journal of Environmental Biology, 24(2), 147-154.

27.
Lovejoy, C., Bowman, J. P., & Hallegraeff, G. M. (1998). Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Applied and Environmental Microbiology, 64(8), 2806-2813.

28.
MacFaddin, J. F. (1980). Biochemical tests for identification of medical bacteria, pp. 36-308, 2nd ed. Williams and Wilkins Co., Baltimore, USA.

29.
May, S. P., Burkholder, J. M., Shumway, S. E., Hegaret, H., Wikfors, G. H., & Frank, D. (2010). Effects of the toxic dinoflagellate Alexandrium monilatum on survival, grazing and behavioral response of three ecologically important bivalve molluscs. Harmful Algae, 9(3), 281-293. crossref(new window)

30.
Mayali, X., & Azam, F. (2004). Algicidal bacteria in the sea and their impact on algal blooms. Journal of Eukaryotic Microbiology, 51, 139-144. crossref(new window)

31.
Mitsutani, A., Yamasaki, I., Kitaguchi, H., Kato, J., Ueno, S., & Ishida, Y. (2001). Analysis of algicidal proteins of a diatom-lytic marine bacterium Pseudoalteromonas sp. strain A25 by two-dimensional electrophoresis. Phycologia, 40(3), 286-291. crossref(new window)

32.
Nakashima, T., Miyazaki, Y., Matsuyama, Y., Muraoka, W., Yamaguchi, K., & Oda, T. (2006). Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium $\gamma$-proteobacterium. Applied Microbiology and Biotechnology, 73(3), 684-690. crossref(new window)

33.
Park, Y. T., Park, J. B., Chung, S. Y., Song, B. C., Lim, W. A., Kim, C. H., & Lee, W. J. (1998). Isolation of marine bacteria killing red tide microalgae, 1. Isolation and algicidal properties of Micrococcus sp. LG possessing killing activity for harmful dinoflagellate, Cochlodinium polykrikoides. Journal of the Korean Fisheries Society, 31(5), 767-773.

34.
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.

35.
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning, a laboratory manual, pp. 25-28, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, N.Y., USA.

36.
Skerratt, J. H., Bowman, J. P., Hallegraeff, G. M., James, S., & Nichols, P. D. (2002). Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Marine Ecology Progressive Series, 244, 1-15. crossref(new window)

37.
Su, J. Q., Yang, X. R., Zheng, T. L., Tian, Y., Jiao, N. Z., Cai, L. Z., & Hong, H. S. (2007a). Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae, 6(6), 799-810. crossref(new window)

38.
Su, J. Q., Yang, X. R., Zheng, T. L., & Hong, H. S. (2007b). An efficient method to obtain axenic cultures of Alexandrium tamarense-a PSP-producing dinoflagellate. Journal of Microbiological Methods, 69(3), 425-430. crossref(new window)

39.
Su, J. Q., Yang, X. R., Zhou, Y. Y., & Zheng, T. L. (2011). Marine bacteria antagonistic to the harmful algal bloom species Alexandrium tamarense (Dinophyceae). Biological Control, 56(2), 132-138. crossref(new window)

40.
Taga, N. (1968). Some ecological aspects of marine bacteria in the KuroShio current. Bulletin of Misaki Marine Biology Institute of Kyoto University, 12, 65-76.

41.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739. crossref(new window)

42.
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. crossref(new window)

43.
Toulza, E., Shin, M. S., Blanc, G., Audic, S., Laabir, M., Collos, Y., Claverie, J. M., & Grzebyk, D. (2010). Gene expression in proliferating cells of the dinoflagellate Alexandrium catenella (Dinophyceae). Applied and Environmental Microbiology, 76(13), 4521-4529. crossref(new window)

44.
Wang, X., Gong, L., Liang, S., Han, X., Zhu, C., & Li, Y. (2005). Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae, 4(2), 433-443. crossref(new window)

45.
Wang, B., Yang, X., Lu, J., Zhou, Y., Su, J., Tian, Y., Zhang, J., Wang, G., & Zheng, T. (2012). A marine bacterium producing protein with algicidal activity against Alexandrium tamarense. Harmful Algae, 13, 83-88. crossref(new window)

46.
Yang, X., Li, X., Zhou, Y. Zheng, W., Yu, C., & Zheng, T. (2014). Novel insights into the algicidal bacterium DH77-1 killing the toxic dinoflagellate Alexandrium tamarense. Science of the Total Environment, 482-483, 116-124. crossref(new window)

47.
Yoshinaga, I., Kawai, T., Takeuchi, T., & Ishida, Y. (1995). Distribution and fluctuation of bacteria inhibiting the growth of a marine red tide phytoplankton Gymnodinium mikimotoi in Tanabe Bay (Wakayama Pref., Japan). Fisheries Science, 61(5), 780-786.

48.
Yoshinaga, I., Kawai, T., & Ishida, Y. (1997). Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref., Japan. Fisheries Science, 63(1), 94-98.

49.
Yoshinaga, I., Kim, M. C., Katanozaka, N., Imai, I., Uchia, A., & Ishia, Y. (1998). Population structure of algicidal marine bacteria targeting Heterosigma akashiwo (Raphidophyceae) through restriction fragment length polymorphism analysis of the bacterial 16S ribosomal RNA genes, during H. akashiwo red tide. Marine Ecology Progressive Series, 170, 33-44. crossref(new window)