Advanced SearchSearch Tips
Phytoremediation Potential of Kenaf (Hibiscus cannabinus L.), Mesta (Hibiscus sabdariffa L.), and Jute (Corchorus capsularis L.) in Arsenic-contaminated Soil
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Phytoremediation Potential of Kenaf (Hibiscus cannabinus L.), Mesta (Hibiscus sabdariffa L.), and Jute (Corchorus capsularis L.) in Arsenic-contaminated Soil
Uddin Nizam, M.; Wahid-U-Zzaman, M.; Mokhlesur Rahman, M.; Kim, Jang-Eok;
  PDF(new window)
BACKGROUND: Arsenic (As)-contaminated groundwater used for long-term irrigation has emerged as a serious problem by adding As to soils. Phytoremediation potential of fiber crops viz., kenaf (Hibiscus cannabinus L.), mesta (Hibiscus sabdariffa L.), and jute (Corchorus capsularis L.) was studied to clean up As-contaminated soil.METHODS AND RESULTS: Varieties of three fiber crops were selected in this study. Seeds of kenaf, mesta, and jute varieties were germinated in As-contaminated soil. Uptake of As by shoot was significantly higher than that by root in the contaminated soil. In As-contaminated soil, kenaf and mesta varieties accumulated more As, than did jute varieties. In the plant parts above ground, mainly the shoots, the highest As absorption was recorded in kenaf cv. HC-3, followed by kenaf cv. HC-95. Kenaf varieties produced more biomass. In terms of higher plant biomass production, and As absorption, kenaf varieties showed considerable potential to remediate As-contaminated soil.CONCLUSION: The overall As absorption and phytoremediation potentiality of plant varieties were in the order of kenaf cv. HC-3 > kenaf cv. HC-95 > mesta cv. Samu-93 > jute cv. CVE-3 > jute cv. BJC-7370. All varieties of kenaf, mesta, and jute could be considered for an appropriate green plant-based remediation technology in As-contaminated soil.
Arsenic;Contaminated soil;Jute (Corchorus capsularis L.);Kenaf (Hibiscus cannabinus L.);Mesta (Hibiscus sabdariffa L.);Phytoremediation;
 Cited by
Alam, M. B., & Sattar, M. A. (2000). Assessment of arsenic contamination in soils and waters in some areas of Bangladesh. Water Science and Technology, 42(7-8), 185-192.

Bada, B. S., & Kalejaiye, S. T. (2010). Response of kenaf (Hibiscus Cannabinus L.) grown in different soil textures and lead concentrations. Research Journal of Agriculture and Biological Sciences, 6(5), 659-664.

Bada, B. S., & Raji, K. A. (2010). Phytoremediation potential of kenaf (Hibiscus cannabinus L.) grown in different soil textures and cadmium concentrations. African Journal of Environmental Science and Technology, 4(5) 250-255.

Baker, R. S., Barrentine, W. L., Bowman, D. H., Hawthorne, W. L., & Pettiet, J. V. (1976). Crop response and arsenic uptake following soil incorporation of MSMA. Weed Science, 24(3), 322-326.

Barman, S. C., & Bhargava, S. K. (1997). Accumulation of heavy metals in soil and plants in industrially polluted fields. Ecological issues and environmental impact assessment (ed. Cheremissionff, P. N.), pp. 289-314. Gulf Publishing Company, Houston, USA.

Bech, J., Poschenrieder, C., Llugany, M., Barceló, J., Tume, P., Tobias, F. J., Barranzuela, J. L., & Vásquez, E. R. (1997). Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Science of the Total Environment, 203(1), 83-91. crossref(new window)

Bruce, S. L., Noller, B. N., Grigg, A. H., Mullen, B. F., Mulligan, D. R., Ritchie, P. J., Currey, N., & Ng, J. C. (2003). A field study conducted at Kidston Gold Mine, to evaluate the impact of arsenic and zinc from mine tailing to grazing cattle. Toxicology Letters, 137(1), 23-34. crossref(new window)

Cai, Y., Georgiadis, M., & Fourqurean, J. W. (2000). Determination of arsenic in seagrass using inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 55(9), 1411-1422. crossref(new window)

De Koe, T. (1994). Agrostis castellana and Agrostis delicatula on heavy metal and arsenic enriched sites in NE Portugal. Science of the Total Environment, 145(1-2), 103-109. crossref(new window)

Duxbury, J. M., Mayer, A. B., Lauren, J. G., & Hassan, N. (2003). Food chain aspects of arsenic contamination in Bangladesh: effects on quality and productivity of rice. Journal of Environmental Science and Health, Part A, 38(1), 61-69. crossref(new window)

Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77(3), 229-236. crossref(new window)

Gomez, K. A., & Gomez, A. A. (1984). Statistical Procedures for Agricultural Research, pp. 1-680, Second ed. John Wiley and Sons Inc., New York, USA.

Gonzaga, M. I., Santos, J. A., & Ma, L. Q. (2008). Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: repeated harvests and arsenic redistribution. Environmental Pollution, 154(2), 212-218. crossref(new window)

Gulz, P. A., Gupta, S. K., & Schulin, R. (2005). Arsenic accumulation of common plants from contaminated soils. Plant and Soil, 272(1-2), 337-347. crossref(new window)

Gupta, P. K. (2013). Soil, Plant, Water and Fertilizer Analysis, pp. 1-368, Second ed. Agrobios Agrohouse, Jodhpur, India.

Gupta, S., Nayek, S., Saha, R. N., & Satpati, S. (2008). Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory. Environmental Geology, 55(4), 731-739. crossref(new window)

Henke, K. R. (2009). Arsenic: Environmental Chemistry, Health Threats and Waste Treatment, pp. 1-39, John Wiley & Sons Ltd., West Sussex, UK.

Ho, W. M., Ang, L. H., & Lee, D. K. (2008). Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. Journal of Environmental Sciences, 20(11), 1341-1347. crossref(new window)

Hoffmann, T., Kutter, C., & Santamaria, J. (2004). Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Engineering in Life Sciences, 4(1), 61-65. crossref(new window)

Hossain, M. F. (2006). Arsenic contamination in Bangladesh-an overview. Agriculture, Ecosystems & Environment, 113(1), 1-16. crossref(new window)

Islam, M. K. (2010). Effect of Arsenic and Chromium Toxicity on Germination and Seedling Growth of Different Jute Varieties, MS Thesis, Bangladesh Agricultural University, Bangladesh.

Islam, M. M., & Rahman, M. M. (2008). Hand Book on Agricultural Technologies of Jute, Kenaf and Mesta Crops, p. 2, Bangladesh Jute Research Institute (BJRI). Dhaka.

Islam, M. S., Wahid-Uz-Zaman, M., & Rahman, M. M. (2013). Phytoaccumulation of Arsenic from Arsenic Contaminated Soils by Eichhornia Crassipes L., Echinochloa Crusgalli L. and Monochoria Hastata L. in Bangladesh. International Journal of Environmental Protection, 3(4), 17-27.

Khan, M. A., Stroud, J. L., Zhu, Y. G., McGrath, S. P., & Zhao, F. J. (2010). Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environmental Science & Technology, 44(22), 8515-8521. crossref(new window)

Kisku, G. C., Barman, S. C., & Bhargava, S. K. (2000). Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water, Air, and Soil Pollution, 120(1-2), 121-137. crossref(new window)

Klute, A. (1986). Methods of soil analysis. Part 1. Physical and mineralogical methods (No. Ed. 2). American Society of Agronomy, Inc.. Soil Science Society American, Wisconsin, USA.

Lokhande, V. H., Srivastava, S., Patade, V. Y., Dwivedi, S., Tripathi, R. D., Nikam, T. D., & Suprasanna, P. (2011). Investigation of arsenic accumulation and tolerance potential of Sesuvium portulacastrum (L.) L. Chemosphere, 82(4), 529-534. crossref(new window)

Loeppert, R. H., & Biswas, B. K. (2002). Methods of Analysis for Soil Arsenic, Texas A & M University, College Station, USA.

Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579. crossref(new window)

Mahimairaja, S., Bolan, N. S., Adriano, D. C., & Robinson, B. (2005). Arsenic contamination and its risk management in complex environmental settings. Advances in Agronomy, 86, 1-82. crossref(new window)

Mandal, S. M., & Bhattacharyya, R. N. (2007). Heavy metal toxicity on seed germination of four pulses. International Journal of Plant Sciences, 2(2), 124-127.

Meera, M., & Agamuthu, P. (2012). Phytoextraction of As and Fe using Hibiscus cannabinus L. from soil polluted with landfill leachate. International Journal of Phytoremediation, 14(2), 186-199. crossref(new window)

Murakami, M., & Ae, N. (2009). Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). Journal of Hazardous Materials, 162(2), 1185-1192. crossref(new window)

Panaullah, G. M., Alam, T., Hossain, M. B., Loeppert, R. H., Lauren, J. G., Meisner, C. A., Ahmed, Z. U., & Duxbury, J. M. (2009). Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant and Soil, 317(1-2), 31-39. crossref(new window)

Salt, D. E. (2000). Phytoextraction: present applications and future promise. Environmental science and pollution control series, pp. 729-744.

Singh, D., Chhonkar, P. K., & Pandey, R. N. (1999). Soil Plant Water Analysis : A Methods Manual, p. 255, Indian Agricultural Research Institute, New Delhi, India.

Singh, R., Singh, D. P., Kumar, N., Bhargava, S. K., & Barman, S. C. (2010). Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. Journal of Environmental Biology, 31(4), 421-430.

Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568. crossref(new window)

Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (1996). Methods of soil analysis. Part 3-Chemical methods. Soil Science Society of America Inc.

Sultana, R., & Kobayashi, K. (2011). Potential of barnyard grass to remediate arsenic‐contaminated soil. Weed Biology and Management, 11(1), 12-17. crossref(new window)

Tripathi, R. D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D. K., & Maathuis, F. J. (2007). Arsenic hazards: strategies for tolerance and remediation by plants. Trends in Biotechnology, 25(4), 158-165. crossref(new window)

Tu, C., Ma, L. Q., & Bondada, B. (2002). Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. Journal of Environmental Quality, 31(5), 1671-1675. crossref(new window)

Visoottiviseth, P., Francesconi, K., & Sridokchan, W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118(3), 453-461. crossref(new window)

Williams, P. N., Islam, M. R., Adomako, E. E., Raab, A., Hossain, S. A., Zhu, Y. G., Feldmann, J., & Meharg, A. A. (2006). Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environmental Science & Technology, 40(16), 4903-4908. crossref(new window)

Welsch, E. P., Crock, J. G., & Sanzolone, R. (1990). Trace level determination of arsenic and selenium using continuous-flow hydride generator atomic absorption spectrophotometry (HG-AAS). Quality assurance manual for the branch of geochemistry (ed. Arbogast, B. F.), pp. 38-45, US Geological Survey, USA.

Ye, W. L., Khan, M. A., McGrath, S. P., & Zhao, F. J. (2011). Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environmental Pollution, 159(12), 3739-3743. crossref(new window)

Zhu, Y. G., Sun, G. X., Lei, M., Teng, M., Liu, Y. X., Chen, N. C., Wang, L. H., Carey, A. M., Deacon, C., Raab, A., Meharg, A. A., & Williams, P. N. (2008). High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice, Environmental Science & Technology, 42(13), 5008-5013. crossref(new window)