JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of acetaminophen administration on liver histopathology, serum GOT/GPT levels and circulating microRNA-122 concentration in olive flounder (Paralichthys olivaceus)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of fish pathology
  • Volume 29, Issue 1,  2016, pp.25-33
  • Publisher : The Korean Society of Fish Pathology
  • DOI : 10.7847/jfp.2016.29.1.025
 Title & Authors
Effects of acetaminophen administration on liver histopathology, serum GOT/GPT levels and circulating microRNA-122 concentration in olive flounder (Paralichthys olivaceus)
Najib, Abdellaoui; Kim, Dong Soo; Kim, Ki Hong;
  PDF(new window)
 Abstract
In human medicine, circulating microRNAs have been successfully utilized as early biomarkers for various abnormalities and disease states. Vertebrate miR-122 is a liver-specific microRNA which is expressed almost solely in hepatocytes and plays an important role in the regulation of hepatocyte function. In this study, to evaluate the potential utility of circulating miR-122 as a biomarker for liver injury in olive flounder (Paralichthys olivaceus), fish were orally intubated with two doses of acetaminophen (500 mg/kg or 1.000 mg/kg of body weight), and the expression of miR-122 in serum was quantified using real time-PCR. Histological change in liver, and the enzymatic activity of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) were also analyzed. The results showed that miR-122 was higher in acetaminophen administered groups compared to control group. The histopathological effect of acetaminophen on olive flounder liver was not distinct. The serum level of GPT and GOT was increased within 2 folds compared to control group by acetaminophen administration. However, the serum miR-122 level was increased more than 3 or 4 folds compared to the control group by administration of 1000 mg/kg of acetaminophen. These results suggest the possible use of miR-122 as an indicator of liver injury in olive flounder, even when histopathological effects are not distinctive.
 Keywords
Circulating microRNA-122;Acetaminophen;Olive flounder;Liver toxicity;Indicator;
 Language
English
 Cited by
 References
1.
Anderson, E. T., Stoskopf, M. K., Morris, J. A., Clarke, E. O., Harms, C. A.: Hematology, Plasma Biochemistry, and Tissue Enzyme Activities of Invasive Red Lionfish Captured off North Carolina, USA. J. Aquat. Anim. Health, 22(4): 266-273, 2010. crossref(new window)

2.
Antoine, D. J., Dear, J. W., Lewis, P. S., Platt, V., Coyle, J., Masson, M., Thanacoody, R. H., Gray, A. J., Webb, D. J., Moggs, J. G., Bateman, D. N., Goldring, C. E., Park, B. K.: Mechanistic biomarkers provide early and sensitive detection of acetaminopheninduced acute liver injury at first presentation to hospital. Hepatology, 58(2): 777-787, 2013. crossref(new window)

3.
Asha, V. V., Akhila, S., Wills, P. J., Subramoniam, A.: Further studies on the antihepatotoxic activity of Phyllanthus maderaspatensis Linn. J. Ethnopharmacol., 92(1): 67-70, 2004. crossref(new window)

4.
Bartel, D. P.: MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116(2): 281-297, 2004. crossref(new window)

5.
Blair, J. B., Hinton, D. E., Miller, M. R.: Morphological changes in trout hepatocytes exposed to acetaminophen. Mar. Environ. Res., 28(1-4): 357-361, 1989. crossref(new window)

6.
Blazka, M. E., Elwell, M. R., Holladay, S. D., Wilson, R. E., Luster, M. I.: Histopathology of Acetaminophen-Induced Liver Changes: Role of Interleukin $1{\alpha}$ and Tumor Necrosis Factor ${\alpha}$. Toxicol. Pathol., 24(2): 181-189, 1996. crossref(new window)

7.
Bower, W. A., Johns, M., Margolis, H. S., Williams, I. T., Bell, B. P.: Population-Based Surveillance for Acute Liver Failure. Am. J. Gastroenterol., 102(11): 2459-2463, 2007. crossref(new window)

8.
Budhu, A., Jia, H.-L., Forgues, M., Liu, C.-G., Goldstein, D., Lam, A., Zanetti, K. A., Ye, Q.-H., Qin, L.-X., Croce, C. M., Tang, Z.-Y., Wang, X. W.: Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology, 47(3): 897-907, 2008. crossref(new window)

9.
Cai, X., Hagedorn, C. H., Cullen, B. R.: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12): 1957-1966, 2004. crossref(new window)

10.
Campos, C., Sundaram, A., Valente, L., Conceicao, L., Engrola, S., Fernandes, J.: Thermal plasticity of the microRNA transcriptome during Senegalese sole development. BMC Genomics, 15(1): 525, 2014. crossref(new window)

11.
Carrington, J. C., Ambros, V.: Role of MicroRNAs in Plant and Animal Development. Science, 301(5631): 336-338, 2003. crossref(new window)

12.
Carthew, R. W., Sontheimer, E. J.: Origins and Mechanisms of microRNAs and siRNAs. Cell, 136(4): 642-655, 2009. crossref(new window)

13.
Chang, J., Nicolas, E., Marks, D., Sander, C., Lerro, A., Buendia, M. A., Xu, C., Mason, W. S., Moloshok, T., Bort, R., Zaret, K. S., Taylor, J. M.: miR-122, a Mammalian Liver-Specific microRNA, is Processed from hcr mRNA and MayDownregulate the High Affinity Cationic Amino Acid Transporter CAT-1. RNA Biol., 1(2): 106-113, 2004. crossref(new window)

14.
Chim, S. S. C., Shing, T. K. F., Hung, E. C. W., Leung, T.-y., Lau, T.-k., Chiu, R. W. K., Dennis Lo, Y. M.: Detection and Characterization of Placental MicroRNAs in Maternal Plasma. Clin. Chem., 54(3): 482-490, 2008. crossref(new window)

15.
Cohen, S. D., Pumford, N. R., Khairallah, E. A., Boekelheide, K., Pohl, L. R., Amouzadeh, H. R., Hinson, J. A.: Selective Protein Covalent Binding and Target Organ Toxicity. Toxicol. Appl. Pharmacol., 143(1): 1-12, 1997. crossref(new window)

16.
Ding, S., Voinnet, O.: Antiviral immunity directed by small RNAs. Cell, 130(3): 413-426, 2007. crossref(new window)

17.
Filipowicz, W., GroBhans, H.: The Liver-Specific Micro RNA miR-122: Biology and Therapeutic Potential. In S. M. Gasser & E. Li (Eds.), Epigenetics and Disease, Vol. 67, pp. 221-238, Springer Basel. 2011.

18.
Fu, Y., Shi, Z., Wu, M., Zhang, J., Jia, L., Chen, X.: Identification and Differential Expression of Micro RNAs during Metamorphosis of the Japanese Flounder (Paralichthys olivaceus). PLoS One, 6(7): e22957, 2011. crossref(new window)

19.
Gabriel, L. P., Michel, C.: Detection and Evaluation of Chemically Induced Liver Injury Principles and Methods of Toxicology, Fifth Edition, pp. 1465-1507, CRC Press. 2007.

20.
Gardner, C. R., Heck, D. E., Yang, C. S., Thomas, P. E., Zhang, X.-J., DeGeorge, G. L., Laskin, J. D., Laskin, D. L.: Role of nitric oxide in acetaminophen-induced hepatotoxicity in the rat. Hepatology, 27(3): 748-754, 1998. crossref(new window)

21.
Gharaei, A., Ghaffari, M., Keyvanshokooh, S., Akrami, R.: Changes in metabolic enzymes, cortisol and glucose concentrations of Beluga (Huso huso) exposed to dietary methylmercury. Fish Physiol. Biochem., 37(3): 485-493, 2011. crossref(new window)

22.
Gibbings, D. J., Ciaudo, C., Erhardt, M., Voinnet, O.: Multivesicular bodies associate with components of microRNA effector complexes and modulate micro RNA activity. Nat. Cell Biol., 11(9): 1143-1149, 2009. crossref(new window)

23.
Hinton DE, S. H., Braunbeck T: Target organ toxicity in marine and freshwater teleosts, : Schlenk D, Benson WH (Taylor & Francis, London). 2001

24.
Hutvagner, G., Zamore, P. D.: A microRNA in a Multiple-Turnover RNAi Enzyme Complex. Science, 297 (5589): 2056-2060, 2002. crossref(new window)

25.
Kavitha, P., Ramesh, R., Bupesh, G., Stalin, A., Subramanian, P.: Hepatoprotective activity of Tribulus terrestris extract against acetaminophen-induced toxicity in a freshwater fish (Oreochromis mossambicus). In Vitro Cellular & Developmental Biology-Animal, 47(10): 698-706, 2011. crossref(new window)

26.
Klaassen, C. D.: Casarett and Doull's Toxicology, The Basic Science of Poisons, Toxic responses of the liver: McGraw-Hill, New York. 2008

27.
Knight, T. R., Jaeschke, H.: Acetaminophen-Induced Inhibition of Fas Receptor-Mediated Liver Cell Apoptosis: Mitochondrial Dysfunction versus Glutathione Depletion. Toxicol. Appl. Pharmacol., 181(2): 133-141, 2002. crossref(new window)

28.
Laskin, D. L., Gardner, C. R., Price, V. F., Jollow, D. J.: Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology, 21(4): 1045-1050, 1995. crossref(new window)

29.
Laterza, O. F., Lim, L., Garrett-Engele, P. W., Vlasakova, K., Muniappa, N., Tanaka, W. K., Johnson, J. M., Sina, J. F., Fare, T. L., Sistare, F. D., Glaab, W. E.: Plasma MicroRNAs as Sensitive and Specific Biomarkers of Tissue Injury. Clin. Chem., 55(11): 1977-1983, 2009. crossref(new window)

30.
Lee, K. J., You, H. J., Park, S. J., Kim, Y. S., Chung, Y. C., Jeong, T. C., Jeong, H. G.: Hepatoprotective effects of Platycodon grandiflorum on acetaminopheninduced liver damage in mice. Cancer Lett., 174(1): 73-81, 2001. crossref(new window)

31.
Lima, R. T., Busacca, S., Almeida, G. M., Gaudino, G., Fennell, D. A., Vasconcelos, M. H.: MicroRNA regulation of core apoptosis pathways in cancer. Eur. J. Cancer, 47(2): 163-174, 2011. crossref(new window)

32.
Ma, H., Hostuttler, M., Wei, H., Rexroad, C. E., III, Yao, J.: Characterization of the Rainbow Trout Egg MicroRNA Transcriptome. PLoS One, 7(6): e39649, 2012. crossref(new window)

33.
Margis, R., Margis, R., Rieder, C. R. M.: Identification of blood microRNAs associated to Parkinsons disease. J. Biotechnol., 152(3): 96-101, 2011. crossref(new window)

34.
Moyer, A. M., Fridley, B. L., Jenkins, G. D., Batzler, A. J., Pelleymounter, L. L., Kalari, K. R., Ji, Y., Chai, Y., Nordgren, K. K. S., Weinshilboum, R. M.: Acetaminophen-NAPQI Hepatotoxicity: A Cell Line Model System Genome-Wide Association Study. Toxicol. Sci., 120(1): 33-41, 2011. crossref(new window)

35.
Nathwani, R. A., Pais, S., Reynolds, T. B., Kaplowitz, N.: Serum alanine aminotransferase in skeletal muscle diseases. Hepatology, 41(2): 380-382, 2005. crossref(new window)

36.
Oliveira, F. A., Chaves, M. H., Almeida, F. R. C., Lima Jr, R. C. P., Silva, R. M., Maia, J. L., Brito, G. A. A. C., Santos, F. A., Rao, V. S.: Protective effect of ${\alpha}$- and ${\beta}$-amyrin, a triterpene mixture from Protium heptaphyllum (Aubl.) March. trunk wood resin, against acetaminophen-induced liver injury in mice. J. Ethnopharmacol., 98(1-2): 103-108, 2005. crossref(new window)

37.
Pineau, P., Volinia, S., McJunkin, K., Marchio, A., Battiston, C., Terris, B., Mazzaferro, V., Lowe, S. W., Croce, C. M., Dejean, A.: miR-221 overexpression contributes to liver tumorigenesis. Proc. Natl. Acad. Sci. U. S. A., 107(1): 264-269, 2010. crossref(new window)

38.
Ramachandran, R., Kakar, S.: Histological patterns in drug-induced liver disease. J. Clin. Pathol., 62(6): 481-492, 2009. crossref(new window)

39.
Reitman, S., Frankel, S.: A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 28(1): 56-63, 1957. crossref(new window)

40.
Samanta, P., Pal, S., Mukherjee, A. K., Ghosh, A. R.: Evaluation of Metabolic Enzymes in Response to Excel Mera 71, a Glyphosate-Based Herbicide, and Recovery Pattern in Freshwater Teleostean Fishes. BioMed Research International, 2014: 6, 2014.

41.
Shivashri, C., Rajarajeshwari, T., Rajasekar, P.: Hepatoprotective action of celery (Apium graveolens) leaves in acetaminophen-fed freshwater fish (Pangasius sutchi). Fish Physiol. Biochem., 39(5): 1057-1069, 2013. crossref(new window)

42.
Starkey Lewis, P. J., Dear, J., Platt, V., Simpson, K. J., Craig, D. G. N., Antoine, D. J., French, N. S., Dhaun, N., Webb, D. J., Costello, E. M., Neoptolemos, J. P., Moggs, J., Goldring, C. E., Park, B. K.: Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology, 54(5): 1767-1776, 2011. crossref(new window)

43.
Teleman, A. A., Cohen, S. M.: Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev., 20(4): 417-422, 2006. crossref(new window)

44.
Thomas, P., Wofford, H. W.: Effects of metals and organic compounds on hepatic glutathione, cysteine, and acid-soluble thiol levels in mullet (Mugil cephalus L.). Toxicol. Appl. Pharmacol., 76(1): 172-182, 1984. crossref(new window)

45.
Thulin, P., Nordahl, G., Gry, M., Yimer, G., Aklillu, E., Makonnen, E., Aderaye, G., Lindquist, L., Mattsson, C. M., Ekblom, B., Antoine, D. J., Park, B. K., Linder, S., Harrill, A. H., Watkins, P. B., Glinghammar, B., Schuppe-Koistinen, I.: Keratin-18 and microRNA-122 complement alanine aminotransferase as novel safety biomarkers for drug-induced liver injury in two human cohorts. Liver International, 34 (3): 367-378, 2014. crossref(new window)

46.
Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., Lotvall, J. O.: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 9(6): 654-659, 2007. crossref(new window)

47.
Vliegenthart, A. D. B., Lewis, P. S., Tucker, C. S., Del Pozo, J., Rider, S., Antoine, D. J., Dubost, V., Westphal, M., Moulin, P., Bailey, M. A., Moggs, J. G., Goldring, C. E., Park, B. K., Dear, J. W.: Retro-orbital blood acquisition facilitates circulating microRNA measurement in zebrafish with paracetamol hepatotoxicity. Zebrafish, 11(3): 219-226, 2014. crossref(new window)

48.
Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., Hood, L. E., Galas, D. J.: Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. U. S. A., 106(11): 4402-4407, 2009. crossref(new window)

49.
Xiao, J., Zhong, H., Zhou, Y., Yu, F., Gao, Y., Luo, Y., Tang, Z., Guo, Z., Guo, E., Gan, X., Zhang, M., Zhang, Y.: Identification and Characterization of MicroRNAs in Ovary and Testis of Nile Tilapia (Oreochromis niloticus) by Using Solexa Sequencing Technology. PLoS One, 9(1): e86821, 2014. crossref(new window)

50.
Xie, C., Xu, S., Yang, L., Ke, Z., Xing, J., Gai, J., Gong, X., Xu, L., Bao, B.: mRNA/microRNA Profile at the Metamorphic Stage of Olive Flounder (Paralichthys olivaceus). Comparative and Functional Genomics, 2011: 12, 2011.

51.
Xu, H., He, J.-H., Xiao, Z.-D., Zhang, Q.-Q., Chen, Y.-Q., Zhou, H., Qu, L.-H.: Liver-enriched transcription factors regulate MicroRNA-122 that targets CUTL1 during liver development. Hepatology, 52(4): 1431-1442, 2010. crossref(new window)

52.
Yanpallewar, S. U., Sen, S., Tapas, S., Kumar, M., Raju, S. S., Acharya, S. B.: Effect of Azadirachta indica on paracetamol-induced hepatic damage in albino rats. Phytomedicine, 10(5): 391-396, 2003. crossref(new window)

53.
Yen, F.-L., Wu, T.-H., Lin, L.-T., Lin, C.-C.: Hepatoprotective and antioxidant effects of Cuscuta chinensis against acetaminophen-induced hepatotoxicity in rats. J. Ethnopharmacol., 111(1): 123-128, 2007. crossref(new window)

54.
Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., Hristov, M., Koppel, T., Jahantigh, M. N., Lutgens, E., Wang, S., Olson, E. N., Schober, A., Weber, C.: Delivery of Micro RNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection (Vol. 2). 2009

55.
Zhang, C., Wang, C., Chen, X., Yang, C., Li, K., Wang, J., Dai, J., Hu, Z., Zhou, X., Chen, L., Zhang, Y., Li, Y., Qiu, H., Xing, J., Liang, Z., Ren, B., Yang, C., Zen, K., Zhang, C.-Y.: Expression Profile of MicroRNAs in Serum: A Fingerprint for Esophageal Squamous Cell Carcinoma. Clin. Chem., 56(12): 1871-1879, 2010. crossref(new window)

56.
Zhang, Y., Jia, Y., Zheng, R., Guo, Y., Wang, Y., Guo, H., Fei, M., Sun, S.: Plasma MicroRNA-122 as a Biomarker for Viral-, Alcohol-, and Chemical-Related Hepatic Diseases. Clin. Chem., 56(12): 1830-1838, 2010. crossref(new window)