JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Mantle-derived CO2-fluid Inclusions in Peridotite Xenoliths from the Alkali Basalt, Jeju Island, South Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Mantle-derived CO2-fluid Inclusions in Peridotite Xenoliths from the Alkali Basalt, Jeju Island, South Korea
Seo, Minyoung; Woo, Yonghoon; Park, Geunyeong; Kim, Eunju; Lim, Hyoun Soo; Yang, Kyounghee;
  PDF(new window)
 Abstract
Negative crystal shaped -rich fluid inclusions, trapped as primary inclusions in neoblasts and as secondary inclusions in porphyroblasts, were studied in spinel peridotite xenoliths from Jeju Island. Based on microthermometric experiments, the solid phase melts at () with no other observable melting events, indicating that the trapped fluid is mostly . The homogenization temperatures show a much wider range from (${\rho}
 Keywords
Jeju Island;pinel peridotite xenoliths;-rich fluid inclusions;shallows lithospheric mantle fluid;re-equilibration;
 Language
Korean
 Cited by
 References
1.
Berkesi, M., Guzmics, T., Szabó, C., Dubessy, J., Bodnar, R.J., Hidas, K., and Ratter, K., 2012, The role of $CO_2$-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths. Earth and Planetary Science Letters, 331-332, 8-20. crossref(new window)

2.
Bodnar, R.J., Binns, P.R., Hall, and D.L., 1989, Synthetic fluid inclusions-VI. Quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure. Journal of metamorphic geology, 7, 229-242. crossref(new window)

3.
Brey, G.P. and Kohler, T.P., 1990, Geothermobarometry in four phase lherzolites. II. New thermobarometers and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353-1378. crossref(new window)

4.
Choi, S.H., Lee, J.I., Park, C.H., and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. The Island Arc, 11, 221-235. crossref(new window)

5.
Choi, S.H.,, Kwon S.T., Mukasa, S.B., and Sagong, H., 2005, Sr-Nd-Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chemical Geology, 221, 40-64. crossref(new window)

6.
Chough, S.K., Kwon, S.T., Ree, J.H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth Science Reviews, 52, 175-235. crossref(new window)

7.
Degi, J., Abart, R., Torok, K., Bali, E., Wirth, R., and Rhede, D., 2010, Symplectite formation during decompression induced garnet breakdown in lower crustal mafic granulite xenoliths: mechanisms and rates. Contributions to Mineralogy and Petrology, 159, 293-314. crossref(new window)

8.
Frezzotti, M.L., Devivo, B., and Clocchiatti, R., 1991, Melt mineral-fluid interactions in ultramafic nodules from alkaline lavas of Mount Etna (Sicily, Italy) - melt and fluid inclusion evidence. Journal of Volcanology and Geothermal Research, 47(3-4), 209-219. crossref(new window)

9.
Frezzotti, M.L. and Peccerillo, A., 2007, Diamond-bearing COHS fluids in the mantle beneath Hawaii. Earth and Planetary Science Letters, 262, 273-283. crossref(new window)

10.
Frey, F.A. and Prinz, M., 1978, Ultramafic inclusions from San Carlos, Arizona; petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38, 129-178. crossref(new window)

11.
Heo, S.Y., Yang, K.H., and Jeong, H.Y., 2012, Hydrous Minerals (Phlogopite and Amphibole) from Basaltic Rocks, Jeju Island: Evidences for Modal Metasomatism. Journal of Petrological Society of Korea, 21, 13-30 (in Korean with English abstract). crossref(new window)

12.
Hidas, K., Guzmics, T., Szabo, C., Kovacs, I., Bodnar, R.J., Zajacz, Z., Nédli, Z., Vaccari, L., and Perucchi, A., 2010, Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian-Pannonian region (central Hungary). Chemical Geology, 274, 1-18. crossref(new window)

13.
Kil, Y.W., Shin, H.J., Yun, S.H., Koh, J.S., and Ahn, U.S., 2008, Geochemical Characteristics of Mineral Phases in the Mantle Xenoliths from Sunheul-ri, Jeju Island. Journal of Mineralogical Society of Korea, 21, 373-382(in Korean with English abstract).

14.
Kim, K.H., Nagao, K., Suzuki, K., Tanaka, T., and Park, E.J., 2003, Evidences of the presence of old continental basement in Jeju volcanic Island, South Korea, revealed by Radiometric ages and Nd-Sr isotopes of granitic rocks. Journal of Geochemical Exploration, 36, 421-441.

15.
Koh, K., Park, J.B., Kang, B.-R., Kim, G.-P., and Moon, D.C., 2013, Volcanism in Jeju Island. Journal of Geological Society of Korea, 49, 209-230 (Korean with English abstract).

16.
Lee, M.W., 1982. Petrology and geochemistry of Jeju volcanic island, Korea. The Science Report of the Tohoku Imperial University Section Series, 15, 177-256.

17.
Lee, S.M., Kim, S.W., and Jin, M.S., 1987, Igneous activities of the Cretaceous to the early Tertiary and their tectonic implication in South Korea. Journal of Geological Society of Korea, 28, 338-359 (Korean with English abstract).

18.
Mercier J.C. and Nicolas, A., 1975, Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16, 454-487. crossref(new window)

19.
Metrich, N., Schiano, P., Clocchiatti, R., and Maury, R.C., 1999, Transfer of sulfur in subduction settings: an example from Batan Island (Luzon volcanic arc, Philippines). Earth and Planetary Science Letters, 167, 1-14. crossref(new window)

20.
Miyazawa, T., 1985, Regional lateral zoning of the Mesozoic to early Tertiary endogenic lead-zinc and copper deposits in East Asia and its geological background, with some comments on the drifting of the Japanese islands. Mining Geolology, 35, 31-39.

21.
O'Reilly, S. and Griffin, W., 1996, 4-D lithosphere mapping: methodology and examples. Tectonophysics, 262, 3-18. crossref(new window)

22.
Otofuji, Y., Mastuda, T., and Nohda, S., 1985, Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japançrifting process of the Japan Sea. Earth and Planetary Science Letters, 72, 265-277.

23.
Park, J-.B., Park, K.H., Cho, D.-L., and Koh, G.-W., 1999, Petrochemical Classification of the Quaternary Volcanic Rocks in Cheju Island, Korea. Journal of the Geological Society of Korea, 35, 253-264 (in Korean with English abstract).

24.
Passchier, C. and Trouw, R., 1996. Micro-Tectonics. Springer-Verlag, Berlin. 289p.

25.
Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy 12, 646p.

26.
Sager, W.W., Handschumacher, D.W., Hilde, T.W.C., and Bracey, D.R., 1988, Tectonic evolution of the northern Pacific plate and Pacific-Farallon-Izanagi triple junction in the late Jurassic and early Cretaceous. Tectonophysics, 155, 345-364. crossref(new window)

27.
Sibuet, J.C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J.P., Hilde, T.W.C., Kimura, M., Chiao, L.Y., Marsset, B., Muller, C., and Stephan, J.F., 1987, Back arc extension in the Okinawa Trough. Journal of Geophysical Research- Solid Earth and Planets, 92, 14041. crossref(new window)

28.
Steinberger, B. and Gaina, C., 2007, Plate tectonic reconstructions predict part of Hawaiian hotspot track to be preserved in Bering Sea. Geology, 35, 407-410. crossref(new window)

29.
Szabo, C. and Bodnar, R.J., 1996, Changing magma ascent rates in the Nógrád-Gömör Volcanic Field Northern Hungary/ Southern Slovakia: evidence from CO2-rich fluid inclusions in metasomatized upper mantle xenoliths. Petrology, 4, 221-230.

30.
Tatsumi, Y., Shukuno, H., Yoshikawa, M., Chang, Q., Sato, K., and Lee, M.W., 2005, The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553.

31.
Vauchez, A. and Garrido, C.J., 2001, Seismic properties of an asthenospherized lithospheric mantle: constraints from lattice preferred orientations in peridotite from the Ronda massif. Earth and Planetary Science Letters, 192, 235-249. crossref(new window)

32.
Viti, C. and Frezzotti, M.L., 2000, Re-equilibration of glass and $CO_2$ inclusions in xenolith olivine: a TEM study. American mineralogists, 85, 1390-1396. crossref(new window)

33.
Woo Y., Yang K., Kil Y., Yun S-H., and Arai S., 2014, Silica-and LREE-enriched spinel peridotite xenoliths from the Quaternary intraplate alkali basalt, Jeju Island, South Korea: Old subarc fragments? Lithos, 208-209, 312-323. crossref(new window)

34.
Xu, Y.G., Menzies, M.A., Matthew, F., Huang, X.L., Liu, Y., and Chen, X.M., 2003, "Reactive" harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning. Geochimica et Cosmochimica Acta, 67, 487-505. crossref(new window)

35.
Yang, K., Hidas, K., Falus, G., Szabó, C., Nam, B., Kovacs, I., and Hwang, H., 2010, Relation between mantle shear zone deformation and metasomatism in spinel peridotite xenoliths of Jeju Island (South Korea): evidence from olivine CPO and trace elements. Journal of Geodynamics, 50, 424-440. crossref(new window)

36.
Yang, K., Arai, S., Yu, J., Yun, S.H,, Kim, J.S., and Hwang, J.Y., 2012a, Gabbroic xenoliths and megacrysts in the Pleisto-Holocene alkali basalts from Jeju Island, South Korea: The implications for metasomatism of the lower continental crust. Lithos, 142-143, 201-215. crossref(new window)

37.
Yang, K., Szabó, C., Arai, S., Yu, J., and Jeong, H., 2012b, Silica enrichment on Group II xenoliths by evolved alkali basalt from Jeju Island, South Korea: implication for modification of intraplate deep-seated rocks. Mineralogy and Petrology, 106, 107-130. crossref(new window)

38.
Yu, J., Yang, K., Jeong, H., and Kil, Y.W., 2012, Petrology of pyroxenite xenoliths enclosed in basaltic rocks from Shinsanri of Jeju Island. Journal of the Geological Society of Korea, 48, 299-312.

39.
Yun, S.H., Koh, J.S., and Park, J.M., 2002, Petrology of the Taeheung-ri Lava in Southeastern Jeju Island. Journal of Petrological Society of Korea, 11, 17-29 (in Korean with English abstract).