JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Laser Ablated Carbon Thin Film from Carbon Nanotubes and Their Property Studies
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 9, Issue 1,  2008, pp.17-22
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2008.9.1.017
 Title & Authors
Laser Ablated Carbon Thin Film from Carbon Nanotubes and Their Property Studies
Sharon, Maheshwar; Rusop, M.; Soga, T.; Afre, Rakesh A.;
  PDF(new window)
 Abstract
A carbon nanotube (CNT) of diameter ~20 nm has been synthesized by spray pyrolysis of turpentine oil using Ni/Fe catalyst. Pellet of CNTs has been used as a target to produce semiconducting carbon thin film of band gap 1.4 eV. Presence of oxygen pressure in the pulse laser deposition (PLD) chamber helped to control the ratio to achieve the desired band gap. Results are discussed with the help of Raman spectra, SEM TEM micrographs and optical measurements suggest that semiconducting carbon thin film deposited by PLD technique has retained its nanotubes structure except that its diameter has increased from 20 nm to 150 nm.
 Keywords
Semiconducting carbon;Turpentine oil for CNTs;Pulse laser deposition technique;Raman spectroscopy studies;
 Language
English
 Cited by
1.
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review,;;;;;

Carbon letters, 2015. vol.16. 1, pp.1-10 crossref(new window)
1.
Carbon nanotubes synthesis using diffusion and premixed flame methods: a review, Carbon letters, 2015, 16, 1, 1  crossref(new windwow)
2.
Relative Content Evaluation of Single-walled Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy, Carbon letters, 2009, 10, 1, 9  crossref(new windwow)
3.
Evaluating the Degree of Macrodispersion of Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy, Carbon letters, 2009, 10, 1, 14  crossref(new windwow)
4.
Standardization Trends for Carbon Nanotubes, Carbon letters, 2009, 10, 1, 1  crossref(new windwow)
 References
1.
Sharon M.; Jain S.; Kichambre P.D.; Mukul K., Mater. Chem. and Phys 1998, 56, 284. crossref(new window)

2.
Sharon M.; Sundarakoteeswaran N.; Kichambre P.D.; Mukul K.; Ando Y.; Zhao X. Dia. and Relat. Mater 1999, 8, 485. crossref(new window)

3.
Sharon M.; Mukhopadhyay I.; Mukhopadhyay K. Sol. Ener. Mate. and Sol. Cells 1997, 45, 35. crossref(new window)

4.
Krishna K.M.; Soga T.; Mukhopadhyay K.; Sharon M.; Umeno M. Sol. Ener. Mater. Sol. Cells 1997, 48, 23.

5.
Mukhopadhyay K.; Mukhopadhyay I.; Sharon M.; Soga T.; and Umeno M. Carbon 1997, 35, 863. crossref(new window)

6.
Afre R. A.; Soga T.; Jimbo T.; Mukul K.; Ando Y. and Sharon M.; Somani P.R.; Umeno M. Micro. Mespo. Mate. 2006, 96 (1-3), 184. crossref(new window)

7.
Scaife D. E. Solar Energy 1980, 25(1), 41. crossref(new window)

8.
Ferrari A.C. and Robertson J. Phys. Rev. B 2000, 61, 14095. crossref(new window)

9.
Yoshitake T.; Nagano A.; Itakura M.; Kuwano N.; Hara T.; and Nagayama K. Jpn. J. Appl. Phys. 2007, 46 (38), L936. crossref(new window)