Advanced SearchSearch Tips
Electrospun Nanocomposite Fiber Mats of Zinc-Oxide Loaded Polyacrylonitrile
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 9, Issue 2,  2008, pp.108-114
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2008.9.2.108
 Title & Authors
Electrospun Nanocomposite Fiber Mats of Zinc-Oxide Loaded Polyacrylonitrile
Nataraj, S.K.; Kim, B.H.; Yun, J.H.; Lee, D.H.; Aminabhavi, T.M.; Yang, K.S.;
  PDF(new window)
We have demonstrated the feasibility of using electrospinning method to fabricate long and continuous composite nanofiber sheets of polyacrylonitrile (PAN) incorporated with zinc oxide (ZnO). Such PAN/ZnO composite nanofiber sheets represent an important step toward utilizing carbon nanofibers (CNFs) as materials to achieve remarkably enhanced physico-chemical properties. In an attempt to derive these advantages, we have used a variety of techniques such as field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction (HR-XRD) to obtain quantitative data on the materials. The CNFs produced are in the diameter range of 100 to 350 nm after carbonization at . Electrical conductivity of the random CNFs was increased by increasing the concentration of ZnO. A dramatic improvement in porosity and specific surface area of the CNFs was a clear evidence of the novelty of the method used. This study indicated that the optimal ZnO concentration of 3 wt% is enough to produce CNFs having enhanced electrical and physico-chemical properties.
Electrospinning;Polyacrylonitrile;Nanofiber;Zinc oxide;Composites;
 Cited by
Structural, morphological and optical properties of ZnO nano-fibers, Superlattices and Microstructures, 2016, 90, 45  crossref(new windwow)
Prediction and characterization of drug release in a multi-drug release system, Journal of Industrial and Engineering Chemistry, 2012, 18, 1, 325  crossref(new windwow)
Polyacrylonitrile-based nanofibers—A state-of-the-art review, Progress in Polymer Science, 2012, 37, 3, 487  crossref(new windwow)
TiO2-induced photo-cross-linked electrospun polyvinyl alcohol nanofibers microfiltration membranes, Polymer, 2016, 99, 642  crossref(new windwow)
The improved electrical conductivity of carbon nanofibers by fluorinated MWCNTs, Journal of Industrial and Engineering Chemistry, 2009, 15, 5, 699  crossref(new windwow)
Polyvinyl alcohol/carbon coated zinc oxide nanocomposites: Electrical, optical, structural and morphological characteristics, Journal of Alloys and Compounds, 2013, 580, 392  crossref(new windwow)
Surface physical and chemical properties of atmospheric pressure plasma-treated polyamideimide fibrous mats using attenuated total reflection Fourier transform infrared imaging, Carbohydrate Polymers, 2012, 88, 2, 562  crossref(new windwow)
Effects of fluorination modification on pore size controlled electrospun activated carbon fibers for high capacity methane storage, Journal of Colloid and Interface Science, 2009, 339, 1, 31  crossref(new windwow)
Chopra, K. L.; Das, S. R. "Thin Film Solar Cells", Eds. Plenum, New York, 1983.

Muller, J.; Fresenius, S. W. J. Anal. Chem. 1994, 349, 380. crossref(new window)

Hingorani, S.; Pillai, V.; Kumar, P.; Multani, M. S.; Shah, D. O. Mater. Res. Bull. 1993, 28, 1303. crossref(new window)

Kong, L.B.; Li, F. Zhang, L.Y.; Yao, X. J. Mater. Sci. Lettr. 1998,17,769. crossref(new window)

Shih, W.C., Wu, M.S. J. Cryst. Growth 1994,137,319. crossref(new window)

Troy, C.T. Photonics Spectra 1997,31,34.

Vanheusden, K.; Seager, C. H.; Warren, W. L.; Tallant, D. R.; Caruso, J.; Hampden-Smith, M. J.; Kodas, T. T. J. Lumines 1997,75,11. crossref(new window)

Mo, C. M.; Li, Y. H.; Lin, Y. S.; Zhang, Y.; Zhang, L. P. J. Appl. Phys. 1998, 83, 4389. crossref(new window)

Li, Q. H.; Wan, Q.; Chen, Y. J.; Wang, T. H. Appl. Phys. Lett. 2004, 85, 636. crossref(new window)

Iijima, S. Nature 1991, 354, 56. crossref(new window)

Rodriguez, N. M.. J. Mater. Res. 1993, 8, 3233. crossref(new window)

Dekker, C. Phys. Today. 1999, 5, 22.

Rodriguez, N. M; Chambers, A.; Baker, R. T. K. Langmuir 1995, 11, 3862. crossref(new window)

Jason, J. G.; Haoqing, H.; Qing, L.; Matthew, J.G.; Andreas, G.; Darrell, H. R.; Frank, W. H.; Stephen, Z. D. J. Am. Chem. Soc. 2004, 126, 15754. crossref(new window)

Kruk, M.; Dufour, B.; Celer, E. B.; Kowalewski, T.; Jaroniec, M.; Matyjaszewski, K. Chem. Mater. 2006, 18, 1417. crossref(new window)

Tang, C.; Qi, K.; Wooley, K. L.; Matyjaszewski, K.; Kowalewski, T. Angew. Chem. Int. Ed. 2004, 43, 3783.

Chen, J. T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M.; Russell, T. P. Adv. Funct. Mater. 2006, 16, 1476. crossref(new window)

Reneker, D. H.; Chun, I. Nanotechnology 1996, 7, 216. crossref(new window)

Bognitzki, M.; Czado, W.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendroff, J. H. Adv. Mater. 2001, 13, 70. crossref(new window)

Kim, C.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Kim, Y. J.; Endo, M.; Yang S. C. Adv. Mater. 2007, 19, 2341. crossref(new window)

Nataraj, S. K.; Kim, B. H.; Yun, J. H.; Lee D. H.; Aminabhavi, T. M.; Yang, K. S. Synthetic Metals (Communicated, 2008).

He, J. H.; Liu, H. M. Nonlinear Analysis 2005, 63, 919. crossref(new window)

He, J. H.; Wu Y.; Zuo, W. W. Polymer 2005, 46, 12637. crossref(new window)

Baumgarten, P. K. J. Coll. Interf. Sci.1971, 36, 71. crossref(new window)

Zhang, Y.; Lin, B.; Sun, X.; Fu, Z. Appl. Phys. Lett. 2005, 86, 131910. crossref(new window)