JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Oxidation Kinetics of Pitch Based Carbon Fibers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 9, Issue 2,  2008, pp.121-126
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2008.9.2.121
 Title & Authors
Oxidation Kinetics of Pitch Based Carbon Fibers
Roh, Jae-Seung;
  PDF(new window)
 Abstract
High modulus pitch based carbon fibers (HM) were exposed to isothermal oxidation using tube furnace in carbon dioxide gas to study the oxidation kinetics under the temperature of . The kinetic equation was introduced and the constant b was obtained in the range of 1.02~1.42. The oxidation kinetics were evaluated by the reaction-controlling regime (RCR) depending upon the apparent activation energies with the conversion increasing from 0.2 to 0.8. The activation energies decrease from 24.7 to 21.0 kcal/mole with the conversion increasing from 0.2 to 0.8, respectively. According to the RCR, the reaction was limited by more diffusion controlling regime for the HM fibers with the conversion increasing. Therefore, it seems that the oxidation which is under the diffusion controlling regime takes place continuously from the skin to the core of the fiber.
 Keywords
Oxidation;Kinetics;Mechanism;High modulus carbon fiber;
 Language
English
 Cited by
1.
Effect of additional heat-treatment temperature on chemical, microstructural, mechanical, and electrical properties of commercial PAN-based carbon fibers,;;;;

Carbon letters, 2011. vol.12. 4, pp.223-228 crossref(new window)
1.
Effect of additional heat-treatment temperature on chemical, microstructural, mechanical, and electrical properties of commercial PAN-based carbon fibers, Carbon letters, 2011, 12, 4, 223  crossref(new windwow)
2.
Influence of Ozone Treatment on Oxidative Stabilization Behavior of Coal-tar-based Isotropic Pitch Fibers, Textile Science and Engineering, 2014, 51, 5, 265  crossref(new windwow)
 References
1.
Mahajan, O. P.; Yarzab R.; Walker Jr. P. L. Feul, 1978, 57, 643.

2.
Sanchez, A. R.; Elguezabal, A. A.; Torre Saenz, L. L. Carbon, 2001, 39, 1367. crossref(new window)

3.
Kasaoka, S.; Sakata, Y.; Kayano, S.; Masuoka, Y. Int. Chem. Eng. 1983, 23, 477.

4.
Hu, Y. Q.; Nikzat, H.; Nawata, M.; Kobayashi, N.; Hasatani, M. Feul, 2001, 80, 2111.

5.
Rafsanjani, H. H.; Jashidi, E.; Rostam-Abadi, M. Carbon, 2002, 40, 1167. crossref(new window)

6.
Lafdi, K.; Bonnamy, S.; Oberlin, A. Carbon, 1992, 30, 533. crossref(new window)

7.
Ismail, M. K. Carbon, 1991, 29, 777. crossref(new window)

8.
Li, T.; Zheng, X. Carbon, 1995, 33, 469. crossref(new window)

9.
Tanabe, Y.; Utasunomiya, M.; Ishibashi, M.; Kyotani, T.; Kaburagi, Y.; Yasuda, E. Carbon, 2002, 40, 1. crossref(new window)

10.
Matsumura, Y.; Xu, X.; Antal, M. J. Jr. Carbon, 1997, 35, 819. crossref(new window)

11.
Tomlinson, J. B.; Freeman, J. J.; Sing, S. W.; Theocharis, C. R. Carbon, 1995, 33, 789. crossref(new window)

12.
Roh, J. S. Carbon Science, 2005, 6, 51.

13.
Roh, J. S. Carbon Science, 2003, 4, 185.

14.
Roh, J. S.; Suhr, D. S. Carbon Science, 2004, 5, 51.

15.
Donnet, J. B.; Bansal, R. C. "Carbon Fibers", 2nd ed., Marcel Decker, inc. 1990, 128.

16.
Marsh, H.; Reinoso, F. R. "Science of Carbon Materials", Universidad de Alicante, Alfredo Candela, 2000, 8.

17.
Zheng, G.; Sano, H.; Suzuki, K.; Kobayashi, K.; Uchiyama, Y.; Cheng, H. M. Carbon, 1999, 37, 2057. crossref(new window)