Advanced SearchSearch Tips
Structural Study of the Activated Carbon Fiber using Laser Raman Spectroscopy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 9, Issue 2,  2008, pp.127-130
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2008.9.2.127
 Title & Authors
Structural Study of the Activated Carbon Fiber using Laser Raman Spectroscopy
Roh, Jae-Seung;
  PDF(new window)
This study aims to find a correlation between XRD and Raman result of the activated carbon fibers as a function of its activation degrees. La of the isotropic carbon fiber prepared by oxidation in carbon dioxide gas have been observed using laser Raman spectroscopy. The basic structural parameters of the fibers were evaluated by XRD as well, and compared with Raman result. The La of the carbon fibers were measured to be 25.5 from Raman analysis and 23.6 from XRD analysis. La of the ACFs were 23.6 and 20.4 , respectively, representing less ordered through activation process. It seems that the of Raman spectra were related to crystallite size(La). Raman spectroscopy has demonstrated its unique ability to detect structural changes during the activation of the fibers. There was good correlation between the La value obtained from Raman and XRD.
 Cited by
Carbon integral honeycomb monoliths as support of copper catalysts in the Kharasch–Sosnovsky oxidation of cyclohexene, Chemical Engineering Journal, 2016, 290, 174  crossref(new windwow)
Fabrication of iridium oxide nanoparticles supported on activated carbon powder by flashlight irradiation for oxygen evolutions, Materials Science and Engineering: B, 2015, 201, 29  crossref(new windwow)
Influence of aluminium impregnation on activated carbon for enhanced desulfurization of DBT at ambient temperature: Role of surface acidity and textural properties, Chemical Engineering Journal, 2016, 303, 489  crossref(new windwow)
Thermal Emissivity of a Nuclear Graphite as a Function of Its Oxidation Degree (2) - Effect of Surface Structural Changes -, Carbon letters, 2009, 10, 4, 300  crossref(new windwow)
Determination of Graphene Sheets Content in Carbon Materials by Raman Spectroscopy, Journal of the Chinese Chemical Society, 2014, 61, 9, 1045  crossref(new windwow)
Combustion and pyrolysis of activated carbon fibre from oil palm empty fruit bunch fibre assisted through chemical activation with acid treatment, Journal of Analytical and Applied Pyrolysis, 2014, 110, 408  crossref(new windwow)
Electrochemical supercapacitor behaviour of functionalized candle flame carbon soot, Bulletin of Materials Science, 2016, 39, 1, 241  crossref(new windwow)
The key pre-pyrolysis in lignin-based activated carbon preparation for high performance supercapacitors, Materials Chemistry and Physics, 2016, 181, 187  crossref(new windwow)
Impact of counterpart materials and nanoparticles on the transfer film structures of polyimide composites, Materials & Design, 2016, 109, 367  crossref(new windwow)
The improved electrical conductivity of carbon nanofibers by fluorinated MWCNTs, Journal of Industrial and Engineering Chemistry, 2009, 15, 5, 699  crossref(new windwow)
Graphene/semicrystalline-carbon derived from amylose films for supercapacitor application, Journal of Physics: Conference Series, 2016, 739, 012085  crossref(new windwow)
Exploring the potential of Raman spectroscopy for the identification of silicone oil residue and wear scar characterization for the assessment of tribofilm functionality, Tribology International, 2015, 90, 481  crossref(new windwow)
Lu, S.; Blanco, C.; Rand, B. Carbon 2000, 38, 3.

Sharma, A.; Kyotani, T.; Tomita, A. Carbon 2000, 38, 1977. crossref(new window)

Kercher, A. K.; Nagle, D. C. Carbon 2003, 41, 15. crossref(new window)

Yoshzawa, N.; Maruyama, K.; Yamada, Y.; Zielinska-Blajet, M. Fuel 2000, 79, 1461. crossref(new window)

Oberlin, A.; Villey, M.; Combaz, A. Carbon 1980, 18, 347. crossref(new window)

Warren, B. E. The Physical Review 1941, 59, 693. crossref(new window)

Yen, T. F.; Erdman, J. G.; Pollack, S. S. Analytical Chemistry 1961, 33, 1587. crossref(new window)

Ludwig Schoening, F. R. Fuel 1983, 62, 1315. crossref(new window)

Shim, H. S.; Hurt, R. Carbon 97 July 18-23, 1997, 438.

Roh, J. S.; Suhr, D. S. Carbon Science 2004, 5, 51

Roh, J. S. Carbon Science 2005, 6, 1

Carrot, P. J. M.; Sing, K. S. W., "Characterization of Porous Solid", ed. Unger, K. K.; Rouquerol, J.; Sing, K. S. W.; Kral, H., Elsevier Sci. Publ., Amsterdam, 1988, 77.

Mittelmeijer-Hazeleger, M. C.; Martin-Martinez, J. M. Carbon 1992, 30, 695. crossref(new window)

Marsh, H. Carbon 1987, 25, 49. crossref(new window)

Ferrari, A. C. Solid State Communications 2007, 143, 47. crossref(new window)

Montes-Moran, M. A.; Young. R. J. Carbon 2002, 40, 845. crossref(new window)

Hardwick, L. J.; Novak, P.; Buqa, H. Solid State Ionics. 2006, 177, 2801. crossref(new window)

Hirai, T,; Compan, J.; Niwase, K.; Linke, J. Journal of Nuclear Materials 2008, 373, 119. crossref(new window)

Perraki, M.; Proyer, A.; Mposkos, E.; Kaindl, R.; Hoinkes, G. Earth and Planetary Science Letters 2006, 241, 672. crossref(new window)

Kuo, C. T.; Wu, J. Y.; Lu, T. R. Materials Chemistry and Physics 2001, 72, 251. crossref(new window)

Lespade, P.; Al-Jishi, R.; Dresselhaus, M. S. Carbon 1982, 20, 427. crossref(new window)

Escribano, R.; Sloan, J. J.; Siddique, N.; Sze, N.; Dudev, T. Vibrational Spectroscopy 2001, 26, 179. crossref(new window)