JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Anion co-doped Titania for Solar Photocatalytic Degradation of Dyes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 9, Issue 2,  2008, pp.131-136
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2008.9.2.131
 Title & Authors
Anion co-doped Titania for Solar Photocatalytic Degradation of Dyes
Lee, Young-Seak; Kim, Sang-Jin; Venkateswaran, P.; Jang, Jeen-Seok; Kim, Hyuk; Kim, Jong-Gyu;
  PDF(new window)
 Abstract
In order to investigate the effect of doping C, N, B and F elements on for reducing the band gap, the heat treatment of was carried out with tetraethylammonium tetrafluoroborate. Through XRD and XPS analysis, the C, N, B and F doped anatase was confirmed. According to the increase of temperature during treatment, the particle size was increased due to aggregation of with elements (B, C, N and F). To investigate the capacity of photocatalyst for degradation of dye under solar light, the degradation of acridine orange and methylene blue was conducted. The degradation of dyes was carried out successfully under solar light indicating the effect of doping elements (B, C, N and F) on for reducing the band gap effectively.
 Keywords
Titanium dioxide;Photocatalyst;Doping;Degradation;Band gap;
 Language
English
 Cited by
1.
TiO2 catalyst deactivation in textile wastewater treatment: Current challenges and future advances, Journal of Industrial and Engineering Chemistry, 2016, 33, 11  crossref(new windwow)
2.
Controlled synthesis of ordered mesoporous g-C3N4 with a confined space effect on its photocatalytic activity, Materials Science in Semiconductor Processing, 2016, 46, 59  crossref(new windwow)
3.
Development of titania nanotube arrays: The roles of water content and annealing atmosphere, Materials Chemistry and Physics, 2015, 160, 111  crossref(new windwow)
4.
An Overview of Nanomaterials for Water and Wastewater Treatment, Advances in Materials Science and Engineering, 2016, 2016, 1  crossref(new windwow)
5.
Effect of NaBF4 addition on the anodic synthesis of TiO2 nanotube arrays photocatalyst for production of hydrogen from glycerol–water solution, International Journal of Hydrogen Energy, 2014, 39, 30, 16927  crossref(new windwow)
 References
1.
Khan, S. U. M.; Akikusa, J. J. Phys. Chem. B 1999, 103, 7184. crossref(new window)

2.
Schiavello, M., Dordrecht, H., "Photoelectrochemistry, Photocatalysis, and Photoreactors: Fundamentals and Developments", Kluwer Academic, Boston, MA, 1985.

3.
Bhatkhande, D. S.; Pangarkar, V. G.; Beenackers A. ACM. J.Chem Technol Biotechnol 2001, 77, 102.

4.
Chiou, C. H.; Juang, R. S. Journal of Hazardous Materials 2007, 149, 1. crossref(new window)

5.
Yamashita, H.; Honda, M.; Harada, M.; Ichihashi, Y.; Anpo, M.; Hirao, T.; Itoh, N.; Iwamoto, N. J. Phys. Chem. B 1998, 102, 10707. crossref(new window)

6.
Palanivelu, K.; Im, J. S.: Lee, Y. S. Carbon Science 2007, 8, 214.

7.
Qiu, X.; Burda, C. Chemical Physics 2007, 339, 1. crossref(new window)

8.
Chen, D.; Yang, D.; Wang, Q.; Jiang, Z. Ind. Eng. Chem. Res 2006, 45, 4110. crossref(new window)

9.
Park, H.; Choi, W. J. Phys. Chem., B 2004, 108, 4086. crossref(new window)

10.
H.Wang, J.P.Lewis J.Phys.: Condens. Matter 2005, 17, 209. crossref(new window)

11.
Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater 2005, 17, 2596. crossref(new window)

12.
Chen, D.; Jiang, Z.; Geng, J.; Wang, Q.; Yang, D. Ind. Eng. Chem. Res 2007, 46, 2741. crossref(new window)

13.
Gombac, V.; Rogatis, L. D.; Gasparotto, A.; Vicario, G.; Montini, T.; Barreca, D.; Balducci, G.; Fornasiero, P.; Tondello, E.; Graziani, M. Chemical Physics 2007, 339, 111. crossref(new window)

14.
Li, D.; Haneda, H.; Hishita S.; Ohashi, N. Chem. Mater. 2005, 17, 2588. crossref(new window)

15.
Yang, J.; Bai, H.; Tan, X.; Lian, J. Applied Surface Science 2006, 253, 1988. crossref(new window)

16.
Ren.W,Ai.Z.Jia.F,Zang.L Fan.X.Zou.Z. Appl. Cata.B Env. 2007, 18, 105604.

17.
Chen, C.; Bai, H.; Chang, S.; Chang, C.; Den, W. J. Nanopart. Res. 2006, 365.

18.
Sakthivel, S.; Kisch, H. Chem. Phys. Chem. 2003, 4, 487 crossref(new window)

19.
Swanepoel, R.; Phys, J. J. E. J. Sci .Instrum. 1983, 16, 1214. crossref(new window)

20.
Yamaki, T.; Shumita, T.; Yamamoto, S. J. Mater. Sci. Lett. 2002, 21, 33. crossref(new window)

21.
Izumi, F.; Bull. Chem. Soc. Jpn. 1978, 51, 1771. crossref(new window)

22.
Sagawa, T.; Sueyoshi, R.; Kawaguchi, M.; Kudo, M.; Ihara, H.; Ohkubo, K. Chem. Commun. 2004, 7, 814.

23.
Kumar, P. M.; Badrinarayanan, S.; Sastry. M. Thin solid films 2000, 358, 122. crossref(new window)

24.
Yang, J.; Bai, H.; Tan, H.; Lian, J. Applied Surface Science 2006, 253 1988. crossref(new window)

25.
Volodin, A. M. Catal. Today 2000, 58, 103. crossref(new window)

26.
Reddy, K. M.; Baruwati, B.; Jayalakshmi, M.; Rao, M. M.; Manorama. S. V. Journal of Solid State Chemistry 2005, 178, 3352. crossref(new window)

27.
Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Appl. Catal. B 2005, 56, 305. crossref(new window)