Advanced SearchSearch Tips
Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 9, Issue 2,  2008, pp.137-144
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2008.9.2.137
 Title & Authors
Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons
Wu, Jin-Gyu; Hong, Ik-Pyo; Park, Sei-Min; Lee, Seong-Young; Kim, Myung-Soo;
  PDF(new window)
The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by and then heat treated at were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC.
EDLC electrode;activated carbon;acid treatment;heat treatment;functional group;electrochemical properties;
 Cited by
CO2 Adsorption of Amine Functionalized Activated Carbons,;;;

Carbon letters, 2009. vol.10. 3, pp.221-224 crossref(new window)
열처리 온도에 의한 구조 결정성이 탄소섬유의 전자파 차폐 성능에 미치는 영향,김종구;정철호;이영석;

공업화학, 2011. vol.22. 2, pp.138-143
Activated carbons prepared from mixtures of coal tar pitch and petroleum pitch and their electrochemical performance as electrode materials for electric double-layer capacitor,;;;;;

Carbon letters, 2015. vol.16. 2, pp.78-85 crossref(new window)
Kwon, O. J.; Jung, Y. H.; Oh, S. M. J. Power sources 2004, 125, 221. crossref(new window)

Lee, J.; Kim, J.; Lee, Y.; Yoon, S.; Oh, S. M.; Hyeon, T. Chem. Mater. 2004, 16, 3323. crossref(new window)

Bonnefoi, L.; Simon, P.; Fauvarque, J. F.; Sarrazin, C.; Dugast, A. J. Power Source 1999, 79, 37. crossref(new window)

Tanahashi, I.; Yoshida, A.; Nishino, A. Denki Kagaku 1988, 56, 892.

Park, S. J.; Jung, W. Y. J. Colloid Interface Sci. 2002, 250, 93. crossref(new window)

Inagaki, M.; Radovic, L.R. Carbon 2002, 40, 2263. crossref(new window)

Burke, A. J. Power sources 2000, 91, 37. crossref(new window)

Qiao, W. M.; Korai, Y.; Mochida, I.; Hori, Y.; Maeda, I. Carbon 2002, 40,351. crossref(new window)

Qu, D. J. Power Source 2002, 109, 403. crossref(new window)

Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143, 3791. crossref(new window)

An, K. H.; Jeon, K. K.; Heo, J. K.; Lim, S. C.; Bae, D. J.; Lee, Y. H. J. Electrochem. Soc. 2002, 149, 1058. crossref(new window)

Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652. crossref(new window)

Park, S. J.; Jang, Y. S. J. Colloid Interface Sci. 2002, 249, 458. crossref(new window)

Park, S. J.; Seo, M. K.; Rhee, K. Y. Carbon 2003, 41, 592. crossref(new window)

Park, S. J.; Seo, M. K.; Rhee, K. Y. J. Phys. Chem. B. 2003, 107, 13100. crossref(new window)

Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937. crossref(new window)