JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 9, Issue 2,  2008, pp.137-144
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2008.9.2.137
 Title & Authors
Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons
Wu, Jin-Gyu; Hong, Ik-Pyo; Park, Sei-Min; Lee, Seong-Young; Kim, Myung-Soo;
  PDF(new window)
 Abstract
The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by and then heat treated at were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC.
 Keywords
EDLC electrode;activated carbon;acid treatment;heat treatment;functional group;electrochemical properties;
 Language
Korean
 Cited by
1.
CO2 Adsorption of Amine Functionalized Activated Carbons,;;;

Carbon letters, 2009. vol.10. 3, pp.221-224 crossref(new window)
2.
열처리 온도에 의한 구조 결정성이 탄소섬유의 전자파 차폐 성능에 미치는 영향,김종구;정철호;이영석;

공업화학, 2011. vol.22. 2, pp.138-143
3.
Activated carbons prepared from mixtures of coal tar pitch and petroleum pitch and their electrochemical performance as electrode materials for electric double-layer capacitor,;;;;;

Carbon letters, 2015. vol.16. 2, pp.78-85 crossref(new window)
1.
Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors, Journal of Fluorine Chemistry, 2011, 132, 12, 1127  crossref(new windwow)
2.
Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion, Carbon, 2009, 47, 11, 2640  crossref(new windwow)
3.
Synthesis and characterization of mesoporous electrospun carbon fibers derived from silica template, Journal of Industrial and Engineering Chemistry, 2009, 15, 6, 914  crossref(new windwow)
4.
Electrochemical Performance of Activated Carbon Electrode Materials with Various Post Treatments for EDLC, Korean Journal of Materials Research, 2014, 24, 6, 285  crossref(new windwow)
5.
The improved electrical conductivity of carbon nanofibers by fluorinated MWCNTs, Journal of Industrial and Engineering Chemistry, 2009, 15, 5, 699  crossref(new windwow)
6.
Effective electromagnetic interference shielding by electrospun carbon fibers involving Fe2O3/BaTiO3/MWCNT additives, Materials Chemistry and Physics, 2010, 124, 1, 434  crossref(new windwow)
7.
Electrochemical and structural characteristics of activated carbon-based electrodes modified via phosphoric acid, Microporous and Mesoporous Materials, 2013, 172, 131  crossref(new windwow)
8.
Activated carbons prepared from mixtures of coal tar pitch and petroleum pitch and their electrochemical performance as electrode materials for electric double-layer capacitor, Carbon letters, 2015, 16, 2, 78  crossref(new windwow)
9.
Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI shielding application, Polymer Bulletin, 2014, 71, 2, 497  crossref(new windwow)
10.
CO2Adsorption of Amine Functionalized Activated Carbons, Carbon letters, 2009, 10, 3, 221  crossref(new windwow)
 References
1.
Kwon, O. J.; Jung, Y. H.; Oh, S. M. J. Power sources 2004, 125, 221. crossref(new window)

2.
Lee, J.; Kim, J.; Lee, Y.; Yoon, S.; Oh, S. M.; Hyeon, T. Chem. Mater. 2004, 16, 3323. crossref(new window)

3.
Bonnefoi, L.; Simon, P.; Fauvarque, J. F.; Sarrazin, C.; Dugast, A. J. Power Source 1999, 79, 37. crossref(new window)

4.
Tanahashi, I.; Yoshida, A.; Nishino, A. Denki Kagaku 1988, 56, 892.

5.
Park, S. J.; Jung, W. Y. J. Colloid Interface Sci. 2002, 250, 93. crossref(new window)

6.
Inagaki, M.; Radovic, L.R. Carbon 2002, 40, 2263. crossref(new window)

7.
Burke, A. J. Power sources 2000, 91, 37. crossref(new window)

8.
Qiao, W. M.; Korai, Y.; Mochida, I.; Hori, Y.; Maeda, I. Carbon 2002, 40,351. crossref(new window)

9.
Qu, D. J. Power Source 2002, 109, 403. crossref(new window)

10.
Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143, 3791. crossref(new window)

11.
An, K. H.; Jeon, K. K.; Heo, J. K.; Lim, S. C.; Bae, D. J.; Lee, Y. H. J. Electrochem. Soc. 2002, 149, 1058. crossref(new window)

12.
Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652. crossref(new window)

13.
Park, S. J.; Jang, Y. S. J. Colloid Interface Sci. 2002, 249, 458. crossref(new window)

14.
Park, S. J.; Seo, M. K.; Rhee, K. Y. Carbon 2003, 41, 592. crossref(new window)

15.
Park, S. J.; Seo, M. K.; Rhee, K. Y. J. Phys. Chem. B. 2003, 107, 13100. crossref(new window)

16.
Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937. crossref(new window)