Advanced SearchSearch Tips
Development of Supercapacitors Using Porous Carbon Materials Synthesized from Plant Derived Precursors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 9, Issue 3,  2008, pp.188-194
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2008.9.3.188
 Title & Authors
Development of Supercapacitors Using Porous Carbon Materials Synthesized from Plant Derived Precursors
Khairnar, Vilas; Jaybhaye, Sandesh; Hu, Chi-Chang; Afre, Rakesh; Soga, Tetsu; Sharon, Madhuri; Sharon, Maheshwar;
  PDF(new window)
Porous carbon materials synthesized from various plant derived precursors i.e. seeds of [Castor (Ricinus communis), Soap nut (Sapindus sp.), Cashew-nut (Semecarpus anacardium), Jack fruit (Artocarpus heterophyllus), Safflower (Carthamus tinctorius), Ambadi (Crotolaria juncea), Neem (Azadirachta indica), Bitter Almond (Prunus amygdalus), Sesamum (Sisamum indicum), Date-palm (Phoenix dactylifera),Canola (Brassica napus), Sunflower (Helianthus annulus)] and fibrous materials from [Corn stem- (Zea mays), Rice straw (Oryza sativa), Bamboo (Bombax bambusa) and Coconut fibers (Cocos nucifera)] were screened to make supercapacitor in 5M KOH solution. Carbon material obtained from Jack fruit seeds (92.0 F/g), Rice straw (83.0 F/g), Soap nut seeds (54.0 F/g), Castor seeds (44.34 F/g) and Bamboo (40.0 F/g) gave high capacitance value as compared to others. The magnitude of capacitance value was found to be inversely proportional to the scan rate of measurement. It is suggested that carbon material should possess large surface area and small pore size to get better value of capacitor. Moreover, the structure of carbon materials should be such that majority of pores are in the plane parallel to the plane of electrode and surface is fluffy like cotton ball.
Supercapacitor;Porous carbon;seed derived porous carbon;Plant derived carbon;Capacitance in KOH;
 Cited by
Changzhou, Y.; Xiaogang, Z.; Wu. Q.; Bo, G. Solid State Ionics 2006, 177, 1237. crossref(new window)

Kalpana , D.; Omkumar, K.S.; Suresh Kumar, S.; Renganathan, N.G. Electrochimica Acta 2006, 52(3), 1309. crossref(new window)

Wang, Y.-G.; Cheng, L.; Xia, Y.-Y. J. Power Sources 2006, 153(1), 191. crossref(new window)

Miura, N.; Oonishi S.; Rajendra Prasad, K. Electrochem. and Solid State Letts. 2004, 7(8), A 247. crossref(new window)

Xiao, Q.; Zhou, X. Electrochimica Acta 2003, 48(5), 575. crossref(new window)

Frackowiak, E.; Metenier, K.; Bertagna, V.; Beguin, F. Appl. Phys. Lett. 2000, 77(15), 2421. crossref(new window)

Babel, K.; Jurewicz, K. J. Phys. and Chem. Solids 2004, 65(2-3), 275. crossref(new window)

Pico, F.; Rojo, J. M.; Sanjuan, M. L.; Anson, A.; Benito, A. M.; Callejas, M. A.; Maser, W. K.; Martinez, M. T. J. Electrochem. Soc. 2004, 151(6), A831. crossref(new window)

Chen, Q.-L.; Xue, K.-H.; Shen, W.; Tao, F.-F.; Yin, S.-Y.; Xu, W. Electrochemica Acta 2004, 49(24), 4157. crossref(new window)

Hu, C.-C.; Chen, W.-C. Electrochimica Acta 2004, 49(21), 3469. crossref(new window)

Yuan, A.; Zhang, Q. Electrochem. Comm. 2006, 8(7), 1173. crossref(new window)

Subramanian, V.; Zhu, H.; Wei, B. J. Power Sources 2006, 159(1), 361. crossref(new window)

Machefaux, E.; Brousse, T.; Belanger, D.; Guyomard, D. J. Power Sources 2007, 165(2), 651. crossref(new window)

Sharon, M.; Soga, T.; Afre, R.; Sathiyamoorthy, D.; Dasgupta, K.; Bhardwaj, S.; Jaybhaye, S. Int. J. Hydrogen Energy 2007, 32, 4238. crossref(new window)