JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Photo Catalytic Activity of CNT-TiO2 Nano Composite in Degrading Anionic and Cationic Dyes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 9, Issue 4,  2008, pp.294-297
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2008.9.4.294
 Title & Authors
Photo Catalytic Activity of CNT-TiO2 Nano Composite in Degrading Anionic and Cationic Dyes
Kim, Sang-Jin; Im, Ji-Sun; Kang, Phil-Hyun; Kim, Tae-Jin; Lee, Young-Seak;
  PDF(new window)
 Abstract
A CNT- nano composite was prepared from titanium chloride () via sol-gel process using multi walled carbon nano tube (MWCNT) followed by calcination at . Spectral analysis revealed that the formed resided on the carbon in anatase form. The effect of adsorption was investigated using aqueous solution of methylene blue and procion blue dye. The photochemical reaction of CNT- composite in aqueous suspensions was studied under UV illumination in batch process. The reaction was investigated by monitoring the discoloration of the dyes employing UV-Visible spectro-photometeric technique as a function of irradiation time. The catalyst composites were found to be efficient for the photodegradation of the dye.
 Keywords
Titanium dioxide;Photocatalyst;Carbon nanotubes;Composite;
 Language
English
 Cited by
1.
Removal of methylene blue and rhodamine B from water by zirconium oxide/graphene, Water Science, 2016, 30, 1, 51  crossref(new windwow)
2.
Preparation, Characterization, and Photocatalytic Applications of MWCNTs/TiO2Composite, International Journal of Photoenergy, 2014, 2014, 1  crossref(new windwow)
3.
Evaluating the Degree of Macrodispersion of Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy, Carbon letters, 2009, 10, 1, 14  crossref(new windwow)
4.
Fluorination effects of MWCNT additives for EMI shielding efficiency by developed conductive network in epoxy complex, Journal of Fluorine Chemistry, 2009, 130, 12, 1111  crossref(new windwow)
5.
Synthesis of zinc oxide and carbon nanotube composites by CVD method: photocatalytic studies, Journal of Porous Materials, 2016  crossref(new windwow)
6.
Synthesis and electrochemical analysis of polyaniline/TiO2 composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid, Electrochimica Acta, 2012, 78, 279  crossref(new windwow)
7.
Effect of oxyfluorinated multi-walled carbon nanotube additives on positive temperature coefficient/negative temperature coefficient behavior in high-density polyethylene polymeric switches, Materials Research Bulletin, 2011, 46, 9, 1391  crossref(new windwow)
8.
TiO2-nanostructured carbon composite sorbent/photocatalyst for humic acid removal from water, Desalination and Water Treatment, 2016, 57, 30, 14178  crossref(new windwow)
 References
1.
Traversa, E.; Vona, M. L. D.; Nunziante,P.; Licoccia, S.; Sasaki, T.; Koshizaki, N. J. Sol-Gel Sci. Technol, 2000, 19, 733. crossref(new window)

2.
Suarez-Parra, R.; Hernandez-Perez, I.; Lopez-Ayala, S.; Rincon, M. E.; Roldan-Ahumada, M. C. Solar Energy Mater. Solar Cells 2003, 76, 189. crossref(new window)

3.
Li, D.; Haneda, H. Photochem. Photobiol. Chem. 2003, 160, 203. crossref(new window)

4.
Tang, W. Z.; An, H. Chemosphere 1995, 31, 4171. crossref(new window)

5.
Jain, R.; Mathur, M.; Sikarwar, S.; Mittal, A. J. Environ. Manage. 2007, 85, 956. crossref(new window)

6.
Aarthi, T.; Narahari, P.; Madras, G. J. Hazard. Mater. 2007, 149, 725. crossref(new window)

7.
Shourong, Z.; Qingguo, H.; Jun, Z.; Bingkun, W. J. Photoch. Photobio. A 1997, 108, 235. crossref(new window)

8.
Toyoda, M.; Nanbu, Y.; Kitob, T.; Himnob, M.; Inagakib, M. Desalination 2003, 59, 273.

9.
Orimoto, T. T.; Ito, S.; Kuwabata, S.; oneyama, H. Y. Environ. Sci. Technol. 1996, 30, 1275. crossref(new window)

10.
Tao, Y.; Wu, C. Y.; Mazyck, D. W. Ind. Eng. Chem. Res. 2006, 45, 5110. crossref(new window)

11.
El-Sheikh, A. H.; Newman, A. P.; Al-paffaee, H.; Phall, S.; Cresswell, N.; York, S. Surf. Coat. Technol. 2004, 187, 284. crossref(new window)

12.
Tryba, B.; Morawski, A.W.; Inagaki, M. Appl. Catal. B: Environ. 2003, 41, 427. crossref(new window)

13.
Yoneyama, H.; Torimoto, T. Catal. Today 2000, 58, 133. crossref(new window)

14.
Li, D.; Haneda, H. Photochem. Photobiol. Chem. 2003, 160, 203. crossref(new window)

15.
Takeda, N.; Iwata, N.; Torimoto, T.; Yoneyama, H. J. Catal. 1998, 177, 240. crossref(new window)

16.
Georgakilas, V.; Gournis, D.; Tzitzios, V.; Pasquato, L.; Guldie, D. M.; Prato, M. J. Mater. Chem. 2007, 17, 2679. crossref(new window)

17.
Knite, M.; Tupureina, V.; Fuith, A.; Zavickis, J.; Teteris, V. Mater. Sci. Eng. C 2007, 27, 1125. crossref(new window)

18.
Lee, J. M.; Palanivelu, K.; Lee, Y. S. Solid State Phenom. 2008, 135, 85. crossref(new window)

19.
Enache, C. S.; Schoonman, J.; krol, R. V. Appl. Surf. Sci. 2006, 252, 6342. crossref(new window)

20.
Sun, J.; Iwasa, M.; Gao, L.; Zhang, Q. H. Carbon 2004, 42, 895. crossref(new window)