Advanced SearchSearch Tips
Electromagnetic Interference Shielding Properties of CO2 Activated Carbon Black Filled Polymer Coating Materials
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 9, Issue 4,  2008, pp.298-302
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2008.9.4.298
 Title & Authors
Electromagnetic Interference Shielding Properties of CO2 Activated Carbon Black Filled Polymer Coating Materials
Hu, Quanli; Kim, Myung-Soo;
  PDF(new window)
Carbon blacks could be used as the filler for the electromagnetic interference (EMI) shielding. The poly vinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) were used as the matrix for the carbon black fillers. Porous carbon blacks were prepared by activation. The activation was performed by treating the carbon blacks in to different degrees of burnoff. During the activation, the enlargement of pore diameters, and development of microporous and mesoporous structures were introduced in the carbon blacks, resulting in an increase of extremely large specific surface areas. The porosity of carbon blacks was an increasing function of the degree of burn-off. The surface area increased from to and the total pore volume increased from to . Also, the C
Electromagnetic interference shielding;Carbon black; activation;Poly vinyl alcohol;Polyvinylidene fluoride;
 Cited by
Electromagnetic interference shielding boards produced using Tetra Paks waste and iron fiber, Journal of Material Cycles and Waste Management, 2015, 17, 2, 391  crossref(new windwow)
Effect of Fluorination of Carbon Nanotubes on Physico-chemical and EMI Shielding Properties of Polymer Composites, Polymer Korea, 2015, 39, 1, 114  crossref(new windwow)
The effect of needle-punched nonwoven fabric thickness on electromagnetic shielding effectiveness, Textile Research Journal, 2015, 85, 8, 804  crossref(new windwow)
Scalable Fabrication of Natural-Fiber Reinforced Composites with Electromagnetic Interference Shielding Properties by Incorporating Powdered Activated Carbon, Materials, 2015, 9, 1, 10  crossref(new windwow)
Luo, X. C.; Chung, D. D. L. Composites, Part B 1999, 30, 227. crossref(new window)

Lee, B. O.; Woo, W. J.; Song, H. S.; Park, H. S.; Hahm, H. S.; Wu, J. P.; Kim, M. S. J. Ind. Eng. Chem. 2001, 7, 305.

Yang, S.; Lozano, K.; Lomeli, A.; Foltz, H. D.; Jones, R. Composites, Part A 2005, 36, 691. crossref(new window)

Wu, J. H.; Chung, D. D. L. Carbon 2002, 40, 445. crossref(new window)

Chung, D. D. L. Carbon 2001, 39, 279. crossref(new window)

Park, S. J.; Kim, K. D. Carbon 2001, 39, 1741. crossref(new window)

Shigeno, Y.; Evans, J. W.; Yoh, I. ISIJ International 1997, 37, 733.

Leboda, R.; Skubiszewska¸ Z.; Ba, J.; Bogillo,VI. Langmuir 1997, 13, 1211. crossref(new window)

Teng, H.; Wang, S. Carbon 2000, 38, 817. crossref(new window)

Valente Nabais, J. M.; Nunes, P.; Carrott, P. J. M.; Ribeiro Carrotta, M. M. L.; Macias Garciab, A.; Diaz-Diezb, M. A. Fuel Processing Technology 2008, 89, 262. crossref(new window)

Ao, G. Y.; Hu, Q. L.; Kim, M. S. Carbon Letter 2008, 9, 115. crossref(new window)

Teng, H.; Ho, J. A.; Hsu, Y. F. Carbon 1997, 35, 275. crossref(new window)

Navarro, M. V.; Seaton, N. A.; Mastral, A. M.; Murillo, R.; Carbon 2006, 44, 2281. crossref(new window)

Park, S. J.; Kim, J. S.; J. Col. Inter. Sci. 2000, 232, 311. crossref(new window)

Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Roy, C. Applied Surface Science 2003, 217, 181. crossref(new window)

Probst, N.; Grivei, E. Carbon 2002, 40, 201. crossref(new window)

Taylor, R. "Introduction to carbon technologies", ed. Marsh, H.; Heintz, E. A.; Rodriguez-Reinoso, F., University of Alicante, Spain, 1993, 185.

Frhlich, J.; Niedermeier, W.; Luginsland, H. D. Composites: Part A 2005, 36, 449. crossref(new window)