JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Evaluating the Degree of Macrodispersion of Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 10, Issue 1,  2009, pp.14-18
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2009.10.1.014
 Title & Authors
Evaluating the Degree of Macrodispersion of Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy
Kim, Ki-Kang; Kim, Soo-Min; Cui, Yan; Jeong, Mun-Seok; Han, Jong-Hun; Choi, Young-Chul; An, Kay-Hyeok; Oh, Kyung-Hui; Lee, Young-Hee;
  PDF(new window)
 Abstract
We measured the degree of macrodispersion of the various single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) using UV-VIS-NIR absorption spectroscopy. CNTs were dispersed with SDS of 2 wt % in deionized water using the homogenizer and then were further centrifugated at 6000 g for 10 min. The degree of macrodispersion, expressed by (%), where is the wavelength and and are the absorbance of the sample after and before centrifugation, respectively. In the case of MWCNTs, we evaluated the degree of macrodispersion by the average degree of macrodispersion () between 1000 and 1200 nm. The degree of macrodispersion of SWCNTs was evaluated at the wavelength in which van Hove singularity-related transition regions were excluded, i.e., the range was chosen between and peaks. We have estimated six samples with the same method. The standard deviation of each sample was lower than 5. Therefore, we presented a reliable evaluation method for the macrodispersion of CNTs for standardization.
 Keywords
Carbon nanotube;Dispersion;UV-VIR-NIR spectroscopy;Standardization;
 Language
English
 Cited by
1.
Improved electrical conductivity of very long multi-walled carbon nanotube bundle/poly (methyl methacrylate) composites, Carbon, 2011, 49, 6, 2127  crossref(new windwow)
2.
A simple solution for the determination of pristine carbon nanotube concentration, The Analyst, 2013, 138, 5, 1490  crossref(new windwow)
 References
1.
Iijima, S. Nature 1991, 354, 56. crossref(new window)

2.
Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622. crossref(new window)

3.
Zhan. G.-D.; Kuntz. J. D.; Wan, J.; Mukherjee, A. K. Nature Mater. 2002, 2, 38. crossref(new window)

4.
Kim S.J.; im J.S.; Kang P.H.; Kim T.; Lee Y.S.; Carbon Lett. 2008, 9, 294. crossref(new window)

5.
Tans. S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49. crossref(new window)

6.
Geng, H.-Z.; Kim. K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. J. Am. Chem. Soc. 2007, 129, 7758. crossref(new window)

7.
Kordas, K.; Toth, G.; Moilanen, P.; Kumpumaki, M.; Vahakangas, J.; Uusimaki, A.; Vajtai, R.; Ajayan, P. M. Appl. Phys. Lett. 2007, 90, 123105. crossref(new window)

8.
Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787. crossref(new window)

9.
Sharon M.; Rusop M.; Soga T.; Afre R.A. Carbon Lett. 2008, 9, 17. crossref(new window)

10.
Sharon M.; Datta S.; Shah M.; Sharon M.W.; Soga T.; Afre R.A. Carbon Lett. 2007, 8, 184. crossref(new window)

11.
Jeong, H. J.; Kim. K. K.; Jeong, S. Y.; Park, M. H.; Yang, C. W.; Lee, Y. H. J. Phys. Chem. B 2004, 108, 17695. crossref(new window)

12.
Bronikowski. M. J.; Willis, P. A.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. J. Vac. Sci. Technol. A 2001, 19, 1800. crossref(new window)

13.
Kitiyanan, B.; Alvarez, W. E.; Harwell, J. H.; Resasco, D. E. Chem. Phys. Lett. 2000, 317, 497. crossref(new window)

14.
Park, Y. S.; Kim, K. S.; Jeong, H. J.; Kim, W. S.; Moon, J. M.; An, K. H.; Bae, D. J.; Lee, Y. S.; Park, G.-S.; Lee, Y. H. Synth. Met. 2002, 126, 245. crossref(new window)

15.
Sun, C.-H.; Yin, L.-C.; Li. F.; Lu, G.-Q.; Cheng, H.-M. Chem. Phys. Lett. 2005, 403, 343. crossref(new window)

16.
Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C.; hauge, R. H.; Tour, J. M.; Smalley, R. E. Science 2003, 301, 1519. crossref(new window)

17.
O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593. crossref(new window)

18.
Lee, J.-H.; Yoon, S.-M.; Kim, K. K.; Cha, I.-S.; Park Y. J.; Choi, J.-Y.; Lee, Y. H.; Paik, U. J. Phys. Chem. C 2008, 112, 15267. crossref(new window)

19.
Moore, V. C.; Strano, M. S.; Haroz, E. H.; Hauge, R. H.; Smalley, R. E. Nano Lett. 2003, 3, 1379. crossref(new window)

20.
Kim, K. K.; Bae, D. J.; Yang, C.-M; An, K. H.; Lee, J. Y.; Lee, Y. H. J. Nanosci. Nanotech. 2005, 5, 1055. crossref(new window)

21.
Kim, K. K.; Yoon, S.-M.; Choi, J.-Y.; Lee, J.; Kim, B.-K.; Kim, J. M.; Lee, J.-H.; Paik, U.; Park, M. H.; Yang, C. W.; An, K. H.; Chung, Y.; Lee, Y. H. Adv. Func. Mater. 2007, 17, 1775. crossref(new window)

22.
Jeong, M. S.; Byeon, C. C.; Cha, O. H.; Jeong, H.; Han, J. H.; Choi. Y. C.; An, K. H.; Oh, K. H.; Kim, K. K.; Lee, Y. H. NANO 2008, 3, 101. crossref(new window)

23.
Ausman, K. D.; Piner, R.; Lourie, O.; Ruoff, R. S.; Korobov, M. J. Phys. Chem. B 2000, 104, 8911. crossref(new window)

24.
Jeong, S. H.; Kim, K. K.; Jeong; S. J.; An, K. H.; Lee, S. H.; Lee, Y. H. Synth. Met. 2007, 157, 570. crossref(new window)

25.
Geng, H. Z.; Lee, D. S.; Kim, K. K.; Kim, S. J.; Bae, J. J.; Lee. Y. H. J. Kor. Phys. Soc. 2008, 53, 979. crossref(new window)

26.
An, K. H.; Lee. Y. H. NANO 2006, 1, 115. crossref(new window)