JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Hydrogen Storage Behaviors of Carbon Nanotubes/Metal-organic Frameworks-5 Hybrid Composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 10, Issue 1,  2009, pp.19-22
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2009.10.1.019
 Title & Authors
Hydrogen Storage Behaviors of Carbon Nanotubes/Metal-organic Frameworks-5 Hybrid Composites
Park, Soo-Jin; Lee, Seul-Yi;
  PDF(new window)
 Abstract
In this work, the hydrogen storage behaviors of carbon nanotubes (CNTs)/metal-organic frameworks-5 (MOF-5) hybrid composites (CNTs/MOF-5) were studied. Hydrothermal synthesis of MOF-5 was conducted by conventional convection heating using 1-methyl-2-pyrrolidone (NMP) as a solvent. Morphological characteristics and average size of the CNTs/MOF-5 were also obtained using a scanning electron microscopy (SEM). The pore structure and specific surface area of the CNTs/MOF-5 were analyzed by N2/77 K adsorption isotherms. The capacity of hydrogen storage of the CNTs/MOF-5 was investigated at 298 K/100 bar. As a result, the CNTs/MOF-5 had crystalline structures which were formed by hybrid synthesis process. It was noted that the CNTs/MOF-5 can be potentially encouraging materials for hydrogen adsorption and storage applications at room temperature.
 Keywords
Carbon nanotubes;Metal-organic frameworks;Hydrogen storage;XRD;SEM;
 Language
English
 Cited by
1.
Preparation and Electroactivities of Carbon Nanotubes-supported Metal Catalyst Electrodes Prepared by a Potential Cycling,;;;

Carbon letters, 2009. vol.10. 3, pp.213-216 crossref(new window)
2.
CO2 Adsorption of Amine Functionalized Activated Carbons,;;;

Carbon letters, 2009. vol.10. 3, pp.221-224 crossref(new window)
3.
Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons,;;;;

Carbon letters, 2011. vol.12. 2, pp.112-115 crossref(new window)
1.
Influence of CO2 activation on hydrogen storage behaviors of platinum-loaded activated carbon nanotubes, Journal of Solid State Chemistry, 2010, 183, 12, 2951  crossref(new windwow)
2.
Fluorination effects of MWCNT additives for EMI shielding efficiency by developed conductive network in epoxy complex, Journal of Fluorine Chemistry, 2009, 130, 12, 1111  crossref(new windwow)
3.
Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons, Carbon letters, 2011, 12, 2, 112  crossref(new windwow)
4.
Effect of oxyfluorinated multi-walled carbon nanotube additives on positive temperature coefficient/negative temperature coefficient behavior in high-density polyethylene polymeric switches, Materials Research Bulletin, 2011, 46, 9, 1391  crossref(new windwow)
5.
Comprehensive review on synthesis and adsorption behaviors of graphene-based materials, Carbon letters, 2012, 13, 2, 73  crossref(new windwow)
6.
Preparation and Electroactivities of Carbon Nanotubes-supported Metal Catalyst Electrodes Prepared by a Potential Cycling, Carbon letters, 2009, 10, 3, 213  crossref(new windwow)
7.
Carbon nanotubes-properties and applications: a review, Carbon letters, 2013, 14, 3, 131  crossref(new windwow)
8.
CO2Adsorption of Amine Functionalized Activated Carbons, Carbon letters, 2009, 10, 3, 221  crossref(new windwow)
9.
Preparation and characterization of ordered porous carbons for increasing hydrogen storage behaviors, Journal of Solid State Chemistry, 2011, 184, 10, 2655  crossref(new windwow)
 References
1.
Schlapbach, L.; Zuttel, A. Nature 2001, 414, 353. crossref(new window)

2.
Park, S.J.; Kim. B.J.; Lee, Y.S. Carbon Let. 2007, 8, 225. crossref(new window)

3.
Park, S.J.; Kim. B.J.; Lee, Y.S. Carbon Let. 2007, 8, 340. crossref(new window)

4.
Park, S.J.; Kim. B.J.; Lee, Y.S. Carbon Let. 2008, 9, 35. crossref(new window)

5.
Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2007, 311, 619. crossref(new window)

6.
Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2007, 311, 311. crossref(new window)

7.
Leuch, L. M. Le; Bandosz, T. J. Carbon 2007, 45, 568. crossref(new window)

8.
Kim, B. J.; Lee, Y. S.; Park, S. J. Int. J. Hydrogen Energy 2008, 33, 2254. crossref(new window)

9.
Benard, P.; Chahine, R. Scripta Mater. 2007, 56, 803. crossref(new window)

10.
Rzepka, M.; Lamp, P. J. Phys. Chem. B 1998, 102, 10894. crossref(new window)

11.
Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem. Int. Ed. 2004, 43, 2334. crossref(new window)

12.
Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127. crossref(new window)

13.
Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am. Chem. Soc. 2004, 126, 5666. crossref(new window)

14.
Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Tetrahedron 2008, 64, 8553. crossref(new window)

15.
Opelt, S.; Türk, S.; Dietzsch, E.; Henschel, A.; Kaskel, S.; Klemm, E. Catal. Comm. 2008, 9, 1286. crossref(new window)

16.
Hafizovic, J.; Bjorgen, M.; Olsbye, U.; Dietzel, P.; Bordiga, S.; Prestipino, C.; Lamberti, C.; Lillerud K. P. J. Am. Chem. Soc. 2007, 129, 3612. crossref(new window)

17.
Li, J.; Cheng S.; Zhao, Q.; Long, P.; Dong, J. Int. J. Hydrogen Energy 2009, 34, 1377. crossref(new window)

18.
Menon, M.; Andriotis, A. N.; Froudakis, G. E. Chem. Phys. Lett. 2000, 320, 425. crossref(new window)

19.
Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. crossref(new window)

20.
Kim, B. J.; Lee, Y. S.; Park, S. J. J. Colloid Interface Sci. 2008, 318, 530. crossref(new window)