JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Quantitative Evaluation of Non-Carbon Content in the Single Wall Carbon Nanotube Soot using Thermogravimetric Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 10, Issue 1,  2009, pp.5-8
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2009.10.1.005
 Title & Authors
Quantitative Evaluation of Non-Carbon Content in the Single Wall Carbon Nanotube Soot using Thermogravimetric Analysis
Han, J.H.; An, K.H.; Lee, N.S.; Goak, J.C.; Jeong, M.S.; Choi, Y.C.; Oh, K.H.; Kim, K.K.; Lee, Y.H.;
  PDF(new window)
 Abstract
We measured the non-carbon content of single-walled carbon nanotubes (SWCNTs) in SWCNT soot using thermogravimetric analysis. The weight increased percentage by the oxidation of metal in the raw soot is well obtained by TGA graph which was confirmed with ICP-AES, XRD, and XPS. This work will be very useful for the purity precise evaluation of SWCNT with UN-vis-NIR spectroscopy.
 Keywords
Single wall carbon nanotubes;Non-carbon contents;TGA;
 Language
English
 Cited by
1.
A new strategy for simple and quick estimation of redox active nickel impurity in pristine SWCNT as nickel hexacyanoferrate by electrochemical technique, Sensors and Actuators B: Chemical, 2017, 238, 1111  crossref(new windwow)
2.
Thermal degradation of some ferrocene-containing poly(aryleneethynylene)s, Journal of Analytical and Applied Pyrolysis, 2016, 120, 399  crossref(new windwow)
3.
Neuron-like polyelectrolyte–carbon nanotube composites for ultra-high loading of metal nanoparticles, New J. Chem., 2014, 38, 10, 4799  crossref(new windwow)
 References
1.
Dresselhaus, M. S.; Avouris, P. "Carbon Nanotubes: Synthesis, Structure, Properties and Applications", ed. M. S. Dresselhaus, G. Dresselhaus and P. Avouris, Heidelberg: Springler-Verlag; 2000, 1.

2.
Avouris, P. Acc. Chem. Res. 2002, 35, 1026. crossref(new window)

3.
Giles, J. Nature 2004, 432, 791.

4.
Arepalli, S.; Nikolaev, P.; Gorelik, O.; Hadjiev, V. G.; Holmes, W.; Files, B.; Yowell, L. Carbon 2004, 42, 1783. crossref(new window)

5.
Itkis, M. E.; Perea, D. E.; Jung, R.; Niyogi, S.; Haddon, R. C. J. Am. Chem. Soc. 2005, 127, 5990. crossref(new window)

6.
Landi, B. J.; Ruf, H. J.; Evans, C. M.; Cress, C. D.; Raffaelle, R. P. J. Phys. Chem. B 2005, 109, 9952. crossref(new window)

7.
Itkis, M. E.; Perea, D. E.; Niyogi, S.; Rickard, S. M.; Hamon, M. A.; Hu, H.; Zhao, B.; Haddon, R. C. Nano Lett. 2002, 3, 309. crossref(new window)

8.
Ryabenko, A. G.; Dorofeeva, T. V.; Zvereva, G. I. Carbon 2004, 42, 1523. crossref(new window)

9.
Lobach, A. S.; Spitsina, N. G.; Terekhov, S. V.; Obraztsova, E. D. Phys. Solid State 2002, 44, 475. crossref(new window)

10.
Jeong, M. S.; Byeon, C. C.; Cha, O. H.; Jeong, H.; Han, J. H.; Choi, Y. C.; An, K. H.; Oh, K. H.; Kim, K. K.; Lee, Y. H. NANO 2008, 3, 101. crossref(new window)