JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of pH-dependent Solubility on Release Behavior of Alginate-Chitosan Blend Containing Activated Carbon
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 10, Issue 3,  2009, pp.208-212
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2009.10.3.208
 Title & Authors
Effect of pH-dependent Solubility on Release Behavior of Alginate-Chitosan Blend Containing Activated Carbon
Oh, Ae-Ri; Jin, Dong-Hwee; Yun, Ju-Mi; Lee, Young-Seak; Kim, Hyung-Il;
  PDF(new window)
 Abstract
Alginate-chitosan blend containing coconut-based activated carbon was prepared as a drug delivery carrier in order to improve the loading and releasing capacity of the drug. The activated carbon was incorporated as effective adsorbent for drug due to the extremely high surface area and pore volume, high adsorption capacity, micro porous structure and specific surface activity. Alginate-chitosan blend containing coconut-based activated carbon showed the sustained release for a longer period. Alginate-chitosan blend showed higher release of drug as the pH increased and higher release of drug as the content of chitosan decreased due to the pH-dependent solubility of blend components.
 Keywords
Controlled release;pH-dependent solubility;Alginate;Chitosan;Activated carbon;
 Language
English
 Cited by
1.
Electro-responsive Transdermal Drug Release of MWCNT/PVA Nanocomposite Hydrogels,;;;;

Carbon letters, 2010. vol.11. 3, pp.211-215 crossref(new window)
1.
Antimicrobial characteristics of N-halaminated chitosan salt/cotton knit composites, Journal of Industrial and Engineering Chemistry, 2014, 20, 4, 1476  crossref(new windwow)
2.
Electro-responsive Transdermal Drug Release of MWCNT/PVA Nanocomposite Hydrogels, Carbon letters, 2010, 11, 3, 211  crossref(new windwow)
3.
Potential Use of Cyclodextrin Complexes for Enhanced Stability, Anti-inflammatory Efficacy, and Ocular Bioavailability of Loteprednol Etabonate, AAPS PharmSciTech, 2016  crossref(new windwow)
 References
1.
Skirtach, A. G.; Shchukin, D. G.; Sukhorukov, G. B. Langmuir 2004, 20, 6988. crossref(new window)

2.
Lakshmi, S. N.; Cato, T. L. Prog. Polym. Sci. 2007, 32, 762. crossref(new window)

3.
Bostman, O.; Pihlajamaki, H. Biomaterials 2000, 21, 2615. crossref(new window)

4.
Pathiraja, G.; Roshan, M.; Raju, A. Biotechnology Annual Review 2006, 12, 301. crossref(new window)

5.
Shum, H. C.; Kim, J.; Weitz, D. A. J. Am. Chem. Soc. 2008, 130, 9543. crossref(new window)

6.
Xu, Y.; Zhan, C.; Fan, L.; Wang, L.; Zheng, H. Int. J. Pharm. 2007, 336, 329. crossref(new window)

7.
Huang, Y.; Chung, T.; Tzeng, T. Int. J. Pharm. 1999, 182, 93. crossref(new window)

8.
Thaned, P.; Satit, P. Int. J. Pharm. 2007, 331, 61. crossref(new window)

9.
Almeida, P. F.; Almeida, A. J. J. Controll. Release 2004, 97, 431. crossref(new window)

10.
Paul, D. V.; Bart, D. H.; Reinout, V. S. Biomaterials, 1997, 18, 273. crossref(new window)

11.
Olav, G.; Olav, S.; Gudmund, S. Biomaterials 1998, 19, 1815. crossref(new window)

12.
Becheran-Maron, L.; Peniche, C.; Arguelles-Monal, W. Int. J. Biol. Macromol. 2004, 34, 127. crossref(new window)

13.
Sinha, V. R.; Singla, A. K.; Wadhawan, S.; Kaushik, R.; Kumria, R.; Bansal, K.; Dhawan, S. Int. J. Pharm. 2004, 274, 1. crossref(new window)

14.
Martinac, A.; Filipovi, J.; Voinovich, D.; Perissutti, B.; Franceschinis, E. Int. J. Pharm. 2005, 291, 69. crossref(new window)

15.
Beate, T.; Per, B.; Terje, E.; Olav, S.; Patrick, S.; Gudmund, S. Biomaterials 1996, 17, 1069. crossref(new window)

16.
Miyazaki, S.; Nakayama, A.; Oda, M.; Takada, M.; Attwood, D. Int. J. Pharm. 1995, 118, 257. crossref(new window)

17.
Anson, M.; Marchese, J.; Garis, E.; Ochoa, N.; Pagliero, C. J. Membrane Sci. 2004, 243, 19. crossref(new window)

18.
Ballinas, L.; Torras, C.; Fierro, V.; Garcia-Valls, R. J. Phys. Chem. Solids 2004, 65, 633. crossref(new window)