JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Thermal Emissivity of a Nuclear Graphite as a Function of Its Oxidation Degree (2) - Effect of Surface Structural Changes -
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 10, Issue 4,  2009, pp.300-304
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2009.10.4.300
 Title & Authors
Thermal Emissivity of a Nuclear Graphite as a Function of Its Oxidation Degree (2) - Effect of Surface Structural Changes -
Seo, Seung-Kuk; Roh, Jae-Seung; Kim, Eung-Seon; Chi, Se-Hwan; Kim, Suk-Hwan; Lee, Sang-Woo;
  PDF(new window)
 Abstract
Thermal emissivity of nuclear graphite was measured with its oxidation degree. Commercial nuclear graphites (IG-110, PECA, IG-430, and NBG-18) have been used as samples. Concave on graphites surface increased as its oxidation degree increased, and R value (Id/Ig) of the graphites decreased as the oxidation degree increased. The thermal emissivity increased depending on the decrease of the R (Id/Ig) value through Raman spectroscopy analysis. It was determined that the thermal emissivity was influenced by the crystallinity of the nuclear graphite.
 Keywords
Nuclear graphite;Oxidation;Emissivity;Microstructure;Crystallinity;
 Language
English
 Cited by
1.
Thermal Emissivity of Nuclear Graphite as a Function of its Oxidation Degree (3): Structural Study using Scanning Electron Microscope and X-Ray Diffraction,;;;;;

Carbon letters, 2011. vol.12. 1, pp.8-15 crossref(new window)
2.
IG-11 원자로용 흑연의 열방사 특성에 미치는 표면 거칠기의 영향,노재승;서승국;김석환;지세환;김응선;김혜성;

대한금속재료학회지, 2011. vol.49. 7, pp.557-564 crossref(new window)
1.
Investigation of the effects of graphite flake alignment on thermal emissivity by applying a magnetic field during coating of an aluminum sheet, Research on Chemical Intermediates, 2014, 40, 7, 2439  crossref(new windwow)
2.
Thermal Emissivity of Nuclear Graphite as a Function of its Oxidation Degree (3): Structural Study using Scanning Electron Microscope and X-Ray Diffraction, Carbon letters, 2011, 12, 1, 8  crossref(new windwow)
3.
Preparation of binderless nanopore-isotropic graphite for inhibiting the liquid fluoride salt and Xe135 penetration for molten salt nuclear reactor, Carbon, 2014, 79, 36  crossref(new windwow)
4.
Effect of the Heat Treatment Temperature on the Compressive Strength of Coal Powder Compacts, Carbon letters, 2012, 13, 3, 151  crossref(new windwow)
5.
Change of Surface and Electrical Characteristics of Silicon Wafer by Wet Etching(2) - Relationship between Surface Roughness and Electrical Properties -, Korean Journal of Materials Research, 2013, 23, 6, 322  crossref(new windwow)
 References
1.
Moormann, R.; Hinssen, H. K.; Kuhn, K. Nuclear Engineering and Design 2004, 227, 281. crossref(new window)

2.
Kurumada, A.; Oku, T.; Harada, K.; Kawamata, K.; Sato, S.; Hiraoka, T.; McEaney, B. Carbon 1997, 35, 1157. crossref(new window)

3.
Idaho National Engineering & Environmental Laboratory, "Very High Temperature Gas Cooled Reactor Systems", 2002 Winter ANS Meeting, Washington, D.C. & T. Chunhe and G. Jie, J. Nuclear Materials 1995, 224, 103. crossref(new window)

4.
Mahajan, O. P.; Yarzab R.; Walker Jr. P. L. Fuel 1978, 57, 643. crossref(new window)

5.
Sanchez, A. R.; Elguezabal, A. A.; Torre Saenz, L. L. Carbon, 2001, 39, 1367. crossref(new window)

6.
Kasaoka, S.; Sakata, Y.; Kayano, S.; Masuoka, Y. Int. Chem. Eng. 1983, 23, 477.

7.
Hu, Y. Q.; Nikzat, H.; Nawata, M.; Kobayashi, N.; Hasatani, M. Fuel 2001, 80, 2111. crossref(new window)

8.
Rafsanjani, H. H.; Jashidi, E.; Rostam-Abadi, M. Carbon 2002, 40, 1167. crossref(new window)

9.
Eatherly, W. P.; Piper, E. L. "Nuclear Graphite", ed. Nightingale R. E., Academic Press, New York and London, 1962, 21.

10.
Babout, L.; Mummery, P. M.; Marrow, T. J.; Tzelepi, A.; Withers, P. J. Carbon 2005, 43, 765. crossref(new window)

11.
Wen, K.Y. ; Marrow, T. J. ; Marsden, B.J. Carbon 2008, 46, 62 crossref(new window)

12.
Sharma, A.; Kyotani, T.; Tomita, A. Carbon 2000, 38, 1977. crossref(new window)

13.
Kovalevski, V. V.; Buseck, P. R.; Cowley, J. M. Carbon 2001, 39, 243. crossref(new window)

14.
Senneca, O.; Salatino, P.; Masi, S. Fuel 1998, 77, 1483. crossref(new window)

15.
Busyin, R. M.; Rouzaud, J. N.; Ross, J. V. Carbon 1995, 33, 679. crossref(new window)

16.
Kordatosa, A. D.; Vlasopoulosa, S.; Strikosa, A.; Ntziounia, S.; Gavela, S.; Trasobaresb, V.; Kasselouri-Rigopouloua. Electrochemica Acta 2009, 54, 2466. crossref(new window)

17.
Schenze, K.; Fischer, S.; Brendler, E. Cellulose 2005 , 12, 223. crossref(new window)

18.
Roh, J. S. Carbon letters 2008, 9, 127. crossref(new window)

19.
Roh, J. S.; Kim, S. h. Carbon Letters 2009, 10, 1. crossref(new window)

20.
Seo, S. K.; Roh, J. S.; Kim, E. S.; Chi, S. H.; Kim, S. H.; Lee, S. W. Carbon letters, in press.

21.
Hardwick, L. J.; Novak, P.; Buqa, H. Solid State Ionics 2006, 177, 2801. crossref(new window)

22.
Hirai, T.; Compan, J.; Niwase, K.; Linke, J. J. Nuclear Materials 2008, 373, 119. crossref(new window)

23.
Perraki, M.; Proyer, A.; Mposkos, E.; Kaindl, R.; Hoinkes, G. Earth and Planetary Science Letters 2006, 241, 672. crossref(new window)