JOURNAL BROWSE
Search
Advanced SearchSearch Tips
X-ray Photoelectron Spectroscopic Analysis of Modified MWCNT and Dynamic Mechanical Properties of E-beam Cured Epoxy Resins with the MWCNT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 10, Issue 4,  2009, pp.314-319
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2009.10.4.314
 Title & Authors
X-ray Photoelectron Spectroscopic Analysis of Modified MWCNT and Dynamic Mechanical Properties of E-beam Cured Epoxy Resins with the MWCNT
Lee, Young-Seak; Im, Ji-Sun; Yun, Seok-Min; Nho, Young-Chang; Kang, Phil-Hyun; Jin, Hang-Kyo;
  PDF(new window)
 Abstract
The surface treatment effects of reinforcement filler were investigated based on the dynamic mechanical properties of mutiwalled carbon nanotubes (MWCNTs)/epoxy composites. The as-received MWCNTs(R-MWCNTs) were chemically modified by direct oxyfluorination method to improve the dispersibility and adhesiveness with epoxy resins in composite system. In order to investigate the induced functional groups on MWCNTs during oxyfluorination, X-ray photoelectron spectroscopy was used. The thermo-mechanical property of MWCNTs/epoxy composite was also measured based on effects of oxyfluorination treatment of MWCNTs. The storage modulus of MWCNTs/epoxy composite was enhanced about 1.27 times through oxyfluorination of MWCNTs fillers at . The storage modulus of oxyfluorinated MWCNTs (OF73-MWCNTs) reinforced epoxy composite was much higher than that of R-MWCNTs/epoxy composite. It revealed that oxygen content led to the efficient carbon-fluorine covalent bonding during oxyfluorination. These functional groups on surface modified MWCNTs induced by oxyfluorination strikingly made an important role for the reinforced epoxy composite.
 Keywords
Dynamic mechanical properties;Carbon nanotube;Oxyfluorination;Epoxy resin;Radiation curing;
 Language
English
 Cited by
1.
Influence of Glycidyl Methacrylate Grafted Multi-walled Carbon Nanotubes on Viscoelastic Behaviors of Polypropylene Nanocomposites,;;

Carbon letters, 2010. vol.11. 4, pp.311-315 crossref(new window)
2.
Influence of Surface Treatment of Multi-walled Carbon Nanotubes on Interfacial Interaction of Nanocomposites,;;

Carbon letters, 2010. vol.11. 2, pp.102-106 crossref(new window)
3.
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess,;;

Carbon letters, 2011. vol.12. 2, pp.57-69 crossref(new window)
4.
아미노불소화 반응에 의한 활성탄소전극 제조 및 전기화학적 특성,임재원;정의경;정민정;이상익;이영석;

공업화학, 2011. vol.22. 4, pp.405-410
1.
A selective drug-release system consisting of surface-modified electrospun carbon fibers by oxy/fluorination, Journal of Porous Materials, 2012, 19, 5, 781  crossref(new windwow)
2.
Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process, Electronic Materials Letters, 2016, 12, 5, 702  crossref(new windwow)
3.
Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors, Journal of Fluorine Chemistry, 2011, 132, 12, 1127  crossref(new windwow)
4.
Functionalization of graphene oxide by fluorination and its characteristics, Journal of Fluorine Chemistry, 2016, 182, 91  crossref(new windwow)
5.
Effect of simultaneous etching and N-doping on the surface and electrochemical properties of AC, Journal of Industrial and Engineering Chemistry, 2012, 18, 1, 116  crossref(new windwow)
6.
A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess, Carbon letters, 2011, 12, 2, 57  crossref(new windwow)
7.
Influence of Glycidyl Methacrylate Grafted Multi-walled Carbon Nanotubes on Viscoelastic Behaviors of Polypropylene Nanocomposites, Carbon letters, 2010, 11, 4, 311  crossref(new windwow)
8.
Influence of Surface Treatment of Multi-walled Carbon Nanotubes on Interfacial Interaction of Nanocomposites, Carbon letters, 2010, 11, 2, 102  crossref(new windwow)
9.
Recent Advances in Carbon-Nanotube-Based Epoxy Composites, Carbon letters, 2013, 14, 1, 1  crossref(new windwow)
 References
1.
Nho, Y. C.; Kang, P. H.; Park, J. S. Radiat. Phys. Chem. 2004, 71, 241.

2.
Ogasawara, T.; Ishida, Y.; Kasai, T. Compos. Sci. Technol. 2009, 69, 2002. crossref(new window)

3.
Prolongo, S. G..; Campo, M.; Gude, M. R.; Chaos-Moran, R.; Urena, A. Compos. Sci. Technol. 2009, 69, 349. crossref(new window)

4.
Kang, S.; Lee, D.; Choi, N. Compos. Sci. Technol. 2009, 69, 245. crossref(new window)

5.
Iijima, S. Nature. 1991, 354, 56. crossref(new window)

6.
Choi, E. S.; Brooks, J. S.; Eaton, D. L.; Al-Haik, M. S.; Hussaini, M. Y.; Garmestani, H.; Li, D.; Dahmen, K. J. App. Phys. 2003, 94, 6034. crossref(new window)

7.
Hamwi, A.; Alvergnat, H.; Bonnamy, S.; Beguin, F. Carbon 1997, 35, 723. crossref(new window)

8.
Tressaud, A.; Shirasaki, T.; Nanse, G.; Papirer, E. Carbon, 2002, 40, 217. crossref(new window)

9.
Lee, Y. S.; Lee, B. K. Carbon 2002, 40, 2461. crossref(new window)

10.
Yun, S. M.; Kim, J. W.; Jung, M. J.; Nho, Y. C.; Kang, P. H.; Lee, Y. S.; Carbon letters 2007, 8, 292. crossref(new window)

11.
Saunders, C.; Lopata, V.; Barnard, J.; Stepanik, T. Radiat. Phys. Chem. 2000, 57, 441. crossref(new window)

12.
Lee, Y. S.; Cho, T. H.; Lee, B. K.; Rho, J. S.; An, K. H.; Lee, Y. H. J. Fluorine Chem. 2003, 120, 99. crossref(new window)

13.
Kim, S. D.; Kim, J. W.; Im, J. S.; Kim, Y. H.; Lee, Y. S. J. Fluorine Chem. 2007, 128, 60. crossref(new window)

14.
Lee, J. M.; Kim, J. W.; Lim, J. S.; Kim, T. J.; Kim, S. D.; Park, S. J.; Lee, Y. S. Carbon Science 2007, 8, 120.

15.
Nanse, G.; Papirer, E.; Fioux, P.; Moguet, F.; Tressaud, A. Carbon 1997, 35, 371. crossref(new window)

16.
Sato, Y.; Itoh, K.; Hagiwara, R.; Fukunaga, T.; Ito, Y. Carbon 2004, 42, 3243. crossref(new window)

17.
Nanse, G.; Papirer, E.; Fioux, P.; Moguet, F.; Tressaud, A. Carbon 1997, 35, 175. crossref(new window)

18.
Zhou, Y.; Pervin, F.; Lewis, L.; Jeelani, S. Mat. Sci. Eng. 2008, 475, 157. crossref(new window)