JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of CNT Diameter on Physical Properties of Styrene-Butadiene Rubber Nanocomposites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 10, Issue 4,  2009, pp.320-324
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2009.10.4.320
 Title & Authors
Effect of CNT Diameter on Physical Properties of Styrene-Butadiene Rubber Nanocomposites
Park, Young-Soo; Huh, Mong-Young; Kang, Sin-Jae; Yun, Seok-Il; Ahn, Kay-Hyeok;
  PDF(new window)
 Abstract
We investigated the effect of diameter and content of carbon nanotubes (CNTs) on the physical properties of styrenebutadiene rubber (SBR)/CNTs nanocomposites. CNTs-reinforced SBR nanocomposites were prepared by the melt mixing process. CNTs with different diameters were synthesized by the chemical vapor deposition method (CVD). In this work, the mechanical property and other physical properties of SBR/CNTS nanocomposites were discussed as a function of the content and diameter of CNTs.
 Keywords
Carbon nanotube;Styrene-butadiene rubber;Diameter;Mechanical properties;
 Language
English
 Cited by
1.
Carbon nanotube-reinforced elastomeric nanocomposites: a review, International Journal of Smart and Nano Materials, 2015, 6, 4, 211  crossref(new windwow)
2.
Influence of carbon nanotubes functionalization on their dispersibility and properties of poly(styrene/methacrylate) nanocomposites, European Polymer Journal, 2016, 84, 218  crossref(new windwow)
 References
1.
Seyhan, A.; Gojny, F.; Tanoglu, M.; Schulte, K. Euro. Polymer. J. 2007, 43, 374. crossref(new window)

2.
Li, Y.; Shimizu, H. Polymer 2007, 48, 2203. crossref(new window)

3.
Kanagaraj, S.; Varandaa, F.; Zhiltsova, T.; Oliveiraa, M.; Simoesa, J. Comp. Sci. Tech. 2007, 67, 3071. crossref(new window)

4.
McIntosh, D.; Khabashesku, V.; Barrera, E. J. Phys. Chem. C, 2007, 111, 1592. crossref(new window)

5.
Zhanga, C.; Nib, Q.; Fud, S.; Kurashikia, K. Comp. Sci. Tech. 2007, 67, 2973 crossref(new window)

6.
Treacy, M.; Ebbesen, T. W.; Gibson, J. M. Nature 1996, 381, 678. crossref(new window)

7.
Dai, H.; Wong, E. W.; Lieber, C. M. Science 1996, 272, 523. crossref(new window)

8.
Wong, E.; Sheehan, P.; Lieber, C. Science 1997, 277, 1971. crossref(new window)

9.
Poncharal, P.; Wang, Z.; Ugarte, D.; Deheer, W. Science 1999, 283, 1513. crossref(new window)

10.
Sui, G.; Zhong, W.; Yang, X.; Zhao, S. Macromol. Mater. Eng. 2007, 292, 1020. crossref(new window)

11.
Sui, G.; Zhong, W. H.; Yang, X. P.; Yu, Y. H. Mater. Sci. Eng. A 2008, 485, 524. crossref(new window)

12.
Kueseng, K.; Jacob, K. I. Eur. Polymer. J. 2007, 42, 220.

13.
Lopez, M. A.; Biagiotti, J.; Valentini, L.; Kenny, J. M. J. Appl. Polymer. Sci. 2006, 92, 3394.

14.
Zhong, W.; Li, J.; Lukehart, C.; Xu, L. Polymer. Nanocomposites. 2006, 26, 128.

15.
Bhattacharyyaa, S.; Sinturela, C.; Bahloula, O.; Saboungia, M.; Thomasb, S.; Salvetata, J. Carbon 2008, 46, 1037. crossref(new window)