JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrical and Mechanical Properties of Graphite Nanosheet/Carbon Nanotubes-filled Epoxy Nanocomposites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Carbon letters
  • Volume 10, Issue 4,  2009, pp.335-338
  • Publisher : Korean Carbon Society
  • DOI : 10.5714/CL.2009.10.4.335
 Title & Authors
Electrical and Mechanical Properties of Graphite Nanosheet/Carbon Nanotubes-filled Epoxy Nanocomposites
Kim, Ki-Seok; Choi, Kyeong-Eun; Park, Soo-Jin;
  PDF(new window)
 Abstract
In this work, the effect of co-carbon fillers on the electrical and mechanical properties of epoxy nanocomposites was investigated. The graphite nanosheets (GNs) and multi-walled carbon nanotubes (MWNTs) were used as co-carbon fillers. The results showed that the electrical conductivity of the epoxy nanocomposites showed a considerable increase upon an addition of MWNTs when GNs were fixed at 2 wt.%. This indicated that low content GNs formed the bulk conductive network and then MWNTs added were intercalated between the GN layers, resulted in the formation of additional conductive pathway. Furthermore, the flexural strength of the epoxy nanocomposites was enhanced with increasing the MWNT content. It was probably attributed to the flexible MWNTs compared with rigid GNs, resulted in the enhancement of the mechanical properties.
 Keywords
Epoxy;Graphite nanosheets;MWNTs;Nanocomposites;Electrical conductivity;
 Language
English
 Cited by
1.
Influence of Glycidyl Methacrylate Grafted Multi-walled Carbon Nanotubes on Viscoelastic Behaviors of Polypropylene Nanocomposites,;;

Carbon letters, 2010. vol.11. 4, pp.311-315 crossref(new window)
2.
알킬화가 다중벽탄소나노튜브로 강인화된 에폭시수지의 계면 및 열전도도에 미치는 영향,허건영;이경엽;박수진;

폴리머, 2011. vol.35. 6, pp.548-552
3.
Thermal Insulation Properties of Epoxy/Mesoporous Carbon Composites,;;;;;

Carbon letters, 2011. vol.12. 1, pp.53-56 crossref(new window)
1.
Influence of Glycidyl Methacrylate Grafted Multi-walled Carbon Nanotubes on Viscoelastic Behaviors of Polypropylene Nanocomposites, Carbon letters, 2010, 11, 4, 311  crossref(new windwow)
2.
Thermal Insulation Properties of Epoxy/Mesoporous Carbon Composites, Carbon letters, 2011, 12, 1, 53  crossref(new windwow)
3.
Influence of Graphite Filler on Physicochemical Characteristics of Polymer/Graphite Composites: A Review, Polymer-Plastics Technology and Engineering, 2016, 55, 6, 604  crossref(new windwow)
4.
Graphene nanosheets/E-glass/epoxy composites with enhanced mechanical and electromagnetic performance, RSC Adv., 2016, 6, 84, 80424  crossref(new windwow)
5.
Graphite Nanosheet as Low Shrinkage Additive, Curing Accelerator, and Conducting Filler for Unsaturated Polyester Resin, Polymer-Plastics Technology and Engineering, 2016, 55, 12, 1231  crossref(new windwow)
 References
1.
Zheng, W.; Wong, S. C.; Sue, H. J. Polymer 2002, 43, 6767. crossref(new window)

2.
Zhao, Y. F.; Xiao, M.; Wang, S. J.; Ge, X. C.; Meng, Y. Z. Comp. Sci. Tech. 2007, 67, 2528. crossref(new window)

3.
Celzard, A.; McRae, E.; Mareche, J. F.; Furdin, G.; Sundqvist, B. J. Appl. Phys. 1998, 83, 1410. crossref(new window)

4.
Weng, W.; Chen, G.; Wu, D. Polymer 2005, 46, 6250. crossref(new window)

5.
Celzard, A.; March, J. F.; Furdin, G.; Puricelli, S. J. Phys. D:Appl. Phys. 2000, 33, 3094. crossref(new window)

6.
Park, S. J. "Interfacial Forces and Fields: Theory and Applications", ed. By J. P. Hsu, Marcel Dekker, New York, 1999, chapter 9.

7.
Chen, G. H.; Weng, W.G.; Wu, D. J.; Wu, C. L. Eur. Polym. J. 2003, 39, 2329. crossref(new window)

8.
Uhl Fawn, M.; Yau, Q.; Nakajima, H.; Manias, E.; Wilkie, C. A. Polym. Degrad. Stabil. 2005, 89, 70. crossref(new window)

9.
Du, X. S.; Xiao, M.; Meng, Y. Z.; Hay, A. S. Polymer 2004, 45, 6713. crossref(new window)

10.
Chen, G.; Lu, J.; Wu, D. Mater. Chem. Phys. 2007, 104, 240. crossref(new window)

11.
Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Comp. Sci. Tech. 2007, 67, 2045. crossref(new window)

12.
Lu, W.; Lin, H.; Wu, D.; Chen, G. Polymer 2006, 47, 4440. crossref(new window)

13.
Yu, A. Y.; Ramesh, P.; Sun, X.; Bekyarova, E.; Itkis, E.; Haddon, R. C. Adv. Mater. 2008, 20, 4740. crossref(new window)

14.
Yu, A.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C. J. Phys. Chem. C 2007, 111, 7565. crossref(new window)

15.
Shenogin, S.; Xue, L. P.; Ozisik, R.; Keblinski, P., Cahill, D. G. J. Appl. Phys. 2004, 95, 8136. crossref(new window)

16.
Martin, C. A.; Sandler, J. K. W.; Shaffer, M. S. P.; Schwarz, M. K.; Bauhofer, W.; Schulte, K.; Windle, A. H. Comp. Sci. Tech. 2004, 64, 2309. crossref(new window)

17.
Li, J.; Wong, P. S.; Kim, J. K. Mater. Sci. Eng. A 2008, 483, 660. crossref(new window)

18.
Heo, S. I.; Oh, K. S.; Yun, J. C.; Jung, S. H.; Yang, Y. C.; Han, K. S. J. Power Sources 2007, 171, 396. crossref(new window)

19.
Seo, M. K.; Lee, J. R.; Park, S. J. Mater. Sci. Eng. A 2005, 404, 79. crossref(new window)